European Radiology

, Volume 26, Issue 10, pp 3598–3607 | Cite as

Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI

  • Daniel Hirtler
  • Julio Garcia
  • Alex J. Barker
  • Julia Geiger



To comprehensively and quantitatively analyse flow and vorticity in the right heart of patients after repair of tetralogy of Fallot (rTOF) compared with healthy volunteers.


Time-resolved flow-sensitive 4D MRI was acquired in 24 rTOF patients and 12 volunteers. Qualitative flow evaluation was based on consensus reading of two observers. Quantitative analysis included segmentation of the right atrium (RA) and ventricle (RV) in a four-chamber view to extract volumes and regional haemodynamic information for computation of regional mean and peak vorticity.


Right heart intra-atrial, intraventricular and outflow tract flow patterns differed considerably between rTOF patients and volunteers. Peak RA and mean RV vorticity was significantly higher in patients (p = 0.02/0.05). Significant negative correlations were found between patients’ maximum and mean RV and RA vorticity and ventricular volumes (p < 0.05). The main pulmonary artery (MPA) regurgitant flow was associated with higher RA and RV vorticity, which was significant for RA maximum and RV mean vorticity (p = 0.01/0.03).


The calculation of vorticity based on 4D flow data is an alternative approach to assess intracardiac flow changes in rTOF patients compared with qualitative flow visualization. Alterations in intracardiac vorticity could be relevant with regard to the development of RV dilation and impaired function.

Key points

• 4D flow MRI with vorticity calculation enables a novel approach to assess intracardiac flow.

• Significantly higher intracardiac vorticity occurred in patients after repair of tetralogy of Fallot.

• Regurgitant flow in the main pulmonary artery is associated with higher right heart vorticity.


4D flow MRI Tetralogy of Fallot Vorticity Right heart Intracardiac flow 



We thank Bernd Jung, Raoul Arnold and Brigitte Stiller for contributing ideas. The scientific guarantor of this publication is Daniel Hirtler. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding by the German Academic Exchange Service, project No. 50751442. AJB received support from AHA 13SDG14360004 and NIH K25HL119608. J. Garcia received support from AHA 14POST18350019 and CONACyT (grant 203355). No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent from each participant over 18 years of age and written informed consent from parents or legal guardians for patients under age were obtained prior to MRI examinations. Methodology: prospective, diagnostic and observational study, performed at one institution.


  1. 1.
    Therrien J, Webb G (2003) Clinical update on adults with congenital heart disease. Lancet 362(9392):1305–1313CrossRefPubMedGoogle Scholar
  2. 2.
    Writing Group M, Lloyd-Jones D, Adams RJ et al (2010) Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215CrossRefGoogle Scholar
  3. 3.
    Apitz C, Webb GD, Redington AN (2009) Tetralogy of Fallot. Lancet 374(9699):1462–1471CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy JG, Gersh BJ, Mair DD et al (1993) Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med 329(9):593–599CrossRefPubMedGoogle Scholar
  5. 5.
    Lillehei CW, Varco RL, Cohen M, Warden HE, Patton C, Moller JH (1986) The first open-heart repairs of ventricular septal defect, atrioventricular communis, and tetralogy of Fallot using extracorporeal circulation by cross-circulation: a 30-year follow-up. Ann Thorac Surg 41(1):4–21CrossRefPubMedGoogle Scholar
  6. 6.
    Huehnergarth KV, Gurvitz M, Stout KK, Otto CM (2008) Repaired tetralogy of Fallot in the adult: monitoring and management. Heart 94(12):1663–1669CrossRefPubMedGoogle Scholar
  7. 7.
    Davlouros PA, Kilner PJ, Hornung TS et al (2002) Right ventricular function in adults with repaired tetralogy of Fallot assessed with cardiovascular magnetic resonance imaging: detrimental role of right ventricular outflow aneurysms or akinesia and adverse right-to-left ventricular interaction. J Am Coll Cardiol 40(11):2044–2052CrossRefPubMedGoogle Scholar
  8. 8.
    Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31(7):794–805CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Norton KI, Tong C, Glass RB, Nielsen JC (2006) Cardiac MR imaging assessment following tetralogy of Fallot repair. Radiographics 26(1):197–211CrossRefPubMedGoogle Scholar
  10. 10.
    Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25(4):824–831CrossRefPubMedGoogle Scholar
  11. 11.
    Wigstrom L, Sjoqvist L, Wranne B (1996) Temporally resolved 3D phase-contrast imaging. Magn Reson Med 36(5):800–803CrossRefPubMedGoogle Scholar
  12. 12.
    Bachler P, Valverde I, Pinochet N et al (2013) Caval blood flow distribution in patients with Fontan circulation: quantification by using particle traces from 4D flow MR imaging. Radiology 267(1):67–75CrossRefPubMedGoogle Scholar
  13. 13.
    Francois CJ, Srinivasan S, Schiebler ML et al (2012) 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson 14:16CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Geiger J, Hirtler D, Burk J et al (2014) Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries. Eur Radiol 24(1):200–208CrossRefPubMedGoogle Scholar
  15. 15.
    Hirtler D, Geiger J, Jung B, Markl M, Arnold R (2013) 4-D MRI flow analysis in the course of interrupted aortic arch reveals complex morphology and quantifies amount of collateral blood flow. Pediatr Radiol 43(8):1037–1040CrossRefPubMedGoogle Scholar
  16. 16.
    Markl M, Geiger J, Jung B, Hirtler D, Arnold R (2012) Noninvasive evaluation of 3D hemodynamics in a complex case of single ventricle physiology. J Magn Reson Imaging 35(4):933–937CrossRefPubMedGoogle Scholar
  17. 17.
    Nordmeyer S, Riesenkampff E, Messroghli D et al (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37(1):208–216CrossRefPubMedGoogle Scholar
  18. 18.
    Uribe S, Bachler P, Valverde I et al (2013) Hemodynamic assessment in patients with one-and-a-half ventricle repair revealed by four-dimensional flow magnetic resonance imaging. Pediatr Cardiol 34(2):447–451CrossRefPubMedGoogle Scholar
  19. 19.
    Rodriguez Munoz D, Markl M, Moya Mur JL et al (2013) Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging 14(11):1029–1038CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sengupta PP, Pedrizzetti G, Kilner PJ et al (2012) Emerging trends in CV flow visualization. JACC Cardiovas Imaging 5(3):305–316CrossRefGoogle Scholar
  21. 21.
    Bachler P, Pinochet N, Sotelo J et al (2013) Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn Reson Imaging 31(2):178–188CrossRefPubMedGoogle Scholar
  22. 22.
    Jeong D, Anagnostopoulos PV, Roldan-Alzate A et al (2015) Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J Thorac Cardiovasc Surg 149(5):1339–1347CrossRefPubMedGoogle Scholar
  23. 23.
    Wong KK, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D (2009) Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng 37(8):1495–1515CrossRefPubMedGoogle Scholar
  24. 24.
    Wong KK, Tu J, Kelso RM et al (2010) Cardiac flow component analysis. Med Eng Phys 32(2):174–188CrossRefPubMedGoogle Scholar
  25. 25.
    Kheradvar A, Assadi R, Falahatpisheh A, Sengupta PP (2012) Assessment of transmitral vortex formation in patients with diastolic dysfunction. J Am Soc Echocardiogr 25(2):220–227CrossRefPubMedGoogle Scholar
  26. 26.
    Bock J, Kreher BW, Hennig J, Markl M (2007) Optimized pre-processing of time-resolved 2D and 3D phase contrast MRI data. In: Proceedings of the 15th scientific meeting of the ISMRM. Berlin, Germany, 3138Google Scholar
  27. 27.
    Buonocore MH (1998) Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med 40(2):210–226CrossRefPubMedGoogle Scholar
  28. 28.
    Frydrychowicz A, Harloff A, Jung B et al (2007) Time-resolved, 3-dimensional magnetic resonance flow analysis at 3 T: visualization of normal and pathological aortic vascular hemodynamics. J Comput Assist Tomogr 31(1):9–15CrossRefPubMedGoogle Scholar
  29. 29.
    Etebari A, Vlachos P (2005) Improvements on the accuracy of derivative estimation from DPIV velocity measurements. Exp Fluids 39:1040–1050CrossRefGoogle Scholar
  30. 30.
    Garcia J, Larose E, Pibarot P, Kadem L (2013) On the evaluation of vorticity using cardiovascular magnetic resonance velocity measurements. J Biomech Eng 135(12):124501CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia J, Barker A, Schnell S et al (2013) 4D flow jet shear layer detection method for the measurement of effective orifice area and assessment of aortic stenosis severity. J Cardiovasc Magn Reson 15:241CrossRefGoogle Scholar
  32. 32.
    Garcia J, Capoulade R, Le Ven F et al (2013) Discrepancies between cardiovascular magnetic resonance and Doppler echocardiography in the measurement of transvalvular gradient in aortic stenosis: the effect of flow vorticity. J Cardiovasc Magn Reson 15:84CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garcia J, Marrufo OR, Rodriguez AO, Larose E, Pibarot P, Kadem L (2012) Cardiovascular magnetic resonance evaluation of aortic stenosis severity using single plane measurement of effective orifice area. J Cardiovasc Magn Reson 14:23CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci U S A 103(16):6305–6308CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fredriksson AG, Zajac J, Eriksson J et al (2011) 4-D blood flow in the human right ventricle. Am J Physiol Heart Circ Physiol 301(6):H2344–H2350CrossRefPubMedGoogle Scholar
  36. 36.
    Mangual JO, Domenichini F, Pedrizzetti G (2012) Describing the highly three dimensional right ventricle flow. Ann Biomed Eng 40(8):1790–1801CrossRefPubMedGoogle Scholar
  37. 37.
    Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13):1717–1731CrossRefPubMedGoogle Scholar
  38. 38.
    Bouzas B, Kilner PJ, Gatzoulis MA (2005) Pulmonary regurgitation: not a benign lesion. Eur Heart J 26(5):433–439CrossRefPubMedGoogle Scholar
  39. 39.
    Ordovas KG, Muzzarelli S, Hope MD et al (2013) Cardiovascular MR imaging after surgical correction of tetralogy of Fallot: approach based on understanding of surgical procedures. Radiographics 33(4):1037–1052CrossRefPubMedGoogle Scholar
  40. 40.
    Geiger J, Markl M, Jung B et al (2011) 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol 21(8):1651–1657CrossRefPubMedGoogle Scholar
  41. 41.
    van der Hulst AE, Westenberg JJ, Kroft LJ et al (2010) Tetralogy of Fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology 256(3):724–734CrossRefPubMedGoogle Scholar
  42. 42.
    Foll D, Taeger S, Bode C, Jung B, Markl M (2013) Age, gender, blood pressure, and ventricular geometry influence normal 3D blood flow characteristics in the left heart. Eur Heart J Cardiovasc Imaging 14(4):366–373CrossRefPubMedGoogle Scholar
  43. 43.
    Eriksson J, Bolger AF, Ebbers T, Carlhall CJ (2013) Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 14(5):417–424CrossRefPubMedGoogle Scholar
  44. 44.
    Pasipoularides A, Shu M, Shah A, Womack MS, Glower DD (2003) Diastolic right ventricular filling vortex in normal and volume overload states. Am J Physiol Heart Circ Physiol 284(4):H1064–H1072CrossRefPubMedGoogle Scholar
  45. 45.
    Toger J, Kanski M, Carlsson M et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662CrossRefPubMedGoogle Scholar
  46. 46.
    Elbaz MS, Calkoen EE, Westenberg JJ, Lelieveldt BP, Roest AA, van der Geest RJ (2014) Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson 16:78CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Calkoen EE, Westenberg JJ, Kroft LJ et al (2015) Characterization and quantification of dynamic eccentric regurgitation of the left atrioventricular valve after atrioventricular septal defect correction with 4D Flow cardiovascular magnetic resonance and retrospective valve tracking. J Cardiovasc Magn Reson 17:18CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Grothoff M, Hoffmann J, Lehmkuhl L et al (2011) Time course of right ventricular functional parameters after surgical correction of tetralogy of Fallot determined by cardiac magnetic resonance. Clin Res Cardiol 100(4):343–350CrossRefPubMedGoogle Scholar
  49. 49.
    Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ (2009) Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:19CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Bock J, Frydrychowicz A, Stalder AF et al (2010) 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63(2):330–338CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2016

Authors and Affiliations

  • Daniel Hirtler
    • 1
  • Julio Garcia
    • 2
  • Alex J. Barker
    • 2
  • Julia Geiger
    • 3
  1. 1.Department of Congenital Heart Defects and Pediatric Cardiology (Heart Center, University of Freiburg)University Hospital FreiburgFreiburgGermany
  2. 2.Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoUSA
  3. 3.Department of RadiologyUniversity Childrens’ Hospital ZurichZurichSwitzerland

Personalised recommendations