Advertisement

European Radiology

, Volume 26, Issue 8, pp 2578–2586 | Cite as

Changes and variability of proton density and T1 relaxation times in early multiple sclerosis: MRI markers of neuronal damage in the cerebral cortex

  • René-Maxime Gracien
  • Sarah C. Reitz
  • Stephanie Michelle Hof
  • Vinzenz Fleischer
  • Hilga Zimmermann
  • Amgad Droby
  • Helmuth Steinmetz
  • Frauke Zipp
  • Ralf Deichmann
  • Johannes C. Klein
Neuro

Abstract

Objectives

Proton density (PD) and T1 relaxation time are promising quantitative MRI (qMRI) markers of neuronal damage in multiple sclerosis (MS). However, it is unknown whether cortical differences of these parameters between patients and controls exist in the early stages of disease. This study investigates cortical T1 and PD in early MS stages, hypothesizing that these are altered and display a high spatial variability.

Methods

Quantitative T1 and PD mapping was performed on 11 patients with clinically isolated syndrome (CIS)/early MS in remission and 11 healthy controls. The normal appearing cortical gray matter was extracted, lobar regions were identified, and mean values and standard deviations of both parameters were calculated within each region.

Results

Increased PD was detected in MS/CIS patients in the cerebral cortex as a whole and all subregions, indicating an increase of water content. Increase of PD variability reached significance in the whole cortex and in the frontal and parietal regions. Longer T1 relaxation times and increased variability were found in the cerebral cortex in all regions studied, indicating a change of microstructural tissue composition that is spatially heterogeneous.

Conclusions

The data show spatially heterogeneous cortical involvement in early MS is reflected in T1 and PD qMRI.

Key Points

Cortical involvement in early MS is reflected in T1/PD quantitative MRI.

The changes are spatially heterogeneous.

Cortical damage goes beyond increased water content.

Keywords

Multiple sclerosis Gray matter Diagnostic imaging Magnetic resonance imaging Demyelinating diseases 

Abbreviations

BET

Brain extraction tool

BW

Band width

CIS

Clinically isolated syndrome

CSF

Cerebrospinal fluid

EDSS

Expanded Disability Status Scale

EPI

Echo planar imaging

FAST

FMRIB automated segmentation tool

FIRST

FMRIB’s integrated registration and segmentation tool

FLAIR

Fluid attenuated inversion recovery

FLASH

Fast low angle shot

FOV

Field-of-view

GE

Gradient echo

FSL

FMRIB Software Library

GM

Gray matter

HC

Healthy controls

MNI

Montreal Neurological Institute

MP-RAGE

Magnetization prepared rapid acquisition of gradient echoes

MRI

Magnetic resonance imaging

PD

Proton density

pu

Percent units

PVE

Partial volume estimate

qMRI

Quantitative magnetic resonance imaging

ROI

Region of interest

RRMS

Relapsing-remitting Multiple Sclerosis

RF

Radiofrequency

TE

Echo time

TI

Inversion time

TR

Repetition time

VFA

Variable flip angle

WM

White matter

Notes

Acknowledgments

The scientific guarantor of this publication is Johannes C Klein.

The authors of this manuscript declare no relationships with any companies relevant to this study:

Dr. RM Gracien went to a MS related training to London in 2013 sponsored by Roche.

Dr. H Steinmetz has received speaker’s honoraria from Bayer, Sanofi and Boehringer Ingelheim.

Dr. F Zipp has received research grants from Teva, Merck Serono, Novartis and Bayer as well as consultation fees from Teva, Merck Serono, Novartis, Bayer Healthcare, Biogen Idec Germany, ONO, Genzyme, Sanofi-Aventis and Octapharma. She has received travel compensation from the aforementioned companies.

Dr. JC Klein received speaker honoraria and travel reimbursement from Medtronic, AstraZeneca, Abbott Laboratories and AbbVie.

This study has received funding by the Bundesministerium für Bildung und Forschung [DLR 01GO0203; Brain Imaging Center Frankfurt] and the Deutsche Forschungsgemeinschaft [DFG CRC-TR 128; Drs Zipp and Deichmann].

One of the authors has significant statistical expertise.

This study was approved by the ethics committee of the State Medical Association of Rhineland-Palatine. Written informed consent was obtained from all healthy controls and patients in this study. Methodology: prospective, multicentre, observational study

Supplementary material

330_2015_4072_Fig5_ESM.jpg (2.5 mb)
Supplementary Figure 1

Data sets for a representative patient in the MNI 152 standard space (x = 5.00, y = 0.00, z = 15.00). Top: Acquired anatomical MP-RAGE data set. Middle: Calculated quantitative T1 map (T1 is given in ms). Bottom: Calculated quantitative PD map (PD is given in percent units, pu). (JPEG 2598 kb)

References

  1. 1.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hajnal JV, de Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM et al (1992) High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr 16:506–513CrossRefPubMedGoogle Scholar
  3. 3.
    Morrissey SP, Miller DH, Kendall BE, Kingsley DP, Kelly MA, Francis DA et al (1993) The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain J Neurol 116:135–146CrossRefGoogle Scholar
  4. 4.
    Droby A, Lukas C, Schänzer A, Spiwoks-Becker I, Giorgio A, Gold R et al (2015) A human post-mortem brain model for the standardization of multi-centre MRI studies. NeuroImage 110C:11–21CrossRefGoogle Scholar
  5. 5.
    Tofts P (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease: measuring changes caused by disease. John Wiley and Sons LtdGoogle Scholar
  6. 6.
    Zipp F, Gold R, Wiendl H (2013) Identification of inflammatory neuronal injury and prevention of neuronal damage in multiple sclerosis: hope for novel therapies? JAMA Neurol 70:1569–1574PubMedGoogle Scholar
  7. 7.
    Siffrin V, Vogt J, Radbruch H, Nitsch R, Zipp F (2010) Multiple sclerosis - candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210CrossRefPubMedGoogle Scholar
  8. 8.
    Filippi M, Rocca MA, Barkhof F, Brück W, Chen JT, Comi G et al (2012) Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol 11:349–360CrossRefPubMedGoogle Scholar
  9. 9.
    Crespy L, Zaaraoui W, Lemaire M, Rico A, Faivre A, Reuter F et al (2011) Prevalence of grey matter pathology in early multiple sclerosis assessed by magnetization transfer ratio imaging. PLoS One 6:e24969CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Burgetova A, Seidl Z, Krasensky J, Horakova D, Vaneckova M (2010) Multiple sclerosis and the accumulation of iron in the Basal Ganglia: quantitative assessment of brain iron using MRI t(2) relaxometry. Eur Neurol 63:136–143CrossRefPubMedGoogle Scholar
  11. 11.
    Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M (2001) Magnetisation transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP et al (2002) Localized (1)H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol 249:902–910CrossRefPubMedGoogle Scholar
  13. 13.
    Griffin CM, Chard DT, Parker GJM, Barker GJ, Thompson AJ, Miller DH (2002) The relationship between lesion and normal appearing brain tissue abnormalities in early relapsing remitting multiple sclerosis. J Neurol 249:193–199CrossRefPubMedGoogle Scholar
  14. 14.
    Griffin CM, Dehmeshki J, Chard DT, Parker GJM, Barker GJ, Thompson AJ et al (2002) T1 histograms of normal-appearing brain tissue are abnormal in early relapsing-remitting multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 8:211–216CrossRefGoogle Scholar
  15. 15.
    Vrenken H, Geurts, Jeroen J G, Knol DL, van Dijk, L Noor, Dattola V, Jasperse B et al (2006) Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 240(3):811–20Google Scholar
  16. 16.
    Hasan KM, Walimuni IS, Abid H, Datta S, Wolinsky JS, Narayana PA (2012) Human brain atlas-based multimodal MRI analysis of volumetry, diffusimetry, relaxometry and lesion distribution in multiple sclerosis patients and healthy adult controls: implications for understanding the pathogenesis of multiple sclerosis and consolidation of quantitative MRI results in MS. J Neurol Sci 313:99–109CrossRefPubMedGoogle Scholar
  17. 17.
    Bluestein KT, Pitt D, Knopp MV, Schmalbrock P (2012) T1 and proton density at 7 T in patients with multiple sclerosis: an initial study. Magn Reson Imaging 30:19–25CrossRefPubMedGoogle Scholar
  18. 18.
    Engström M, Warntjes JBM, Tisell A, Landtblom A, Lundberg P (2014) Multi-parametric representation of voxel-based quantitative magnetic resonance imaging. PLoS One 9:e111688CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chard D, Miller D (2009) Grey matter pathology in clinically early multiple sclerosis: evidence from magnetic resonance imaging. J Neurol Sci 282:5–11CrossRefPubMedGoogle Scholar
  20. 20.
    Venkatesan R, Lin W, Haacke EM (1998) Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 40:592–602CrossRefGoogle Scholar
  21. 21.
    Preibisch C, Deichmann R (2009) T1 mapping using spoiled FLASH-EPI hybrid sequences and varying flip angles. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 62:240–246CrossRefGoogle Scholar
  22. 22.
    Volz S, Nöth U, Rotarska-Jagiela A, Deichmann R (2010) A fast B1-mapping method for the correction and normalization of magnetization transfer ratio maps at 3 T. NeuroImage 49:3015–3026CrossRefPubMedGoogle Scholar
  23. 23.
    Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 15:152–157CrossRefGoogle Scholar
  24. 24.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219CrossRefPubMedGoogle Scholar
  25. 25.
    Preibisch C, Deichmann R (2009) Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 61:125–135CrossRefGoogle Scholar
  26. 26.
    Volz S, Nöth U, Deichmann R (2012) Correction of systematic errors in quantitative proton density mapping. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 68:74–85CrossRefGoogle Scholar
  27. 27.
    Volz S, Nöth U, Jurcoane A, Ziemann U, Hattingen E, Deichmann R (2012) Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities. NeuroImage 63:540–552CrossRefPubMedGoogle Scholar
  28. 28.
    Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP (1991) In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 17:402–413CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57CrossRefPubMedGoogle Scholar
  30. 30.
    Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging JMRI 9:531–538CrossRefPubMedGoogle Scholar
  31. 31.
    Brex PA, Parker GJ, Leary SM, Molyneux PD, Barker GJ, Davie CA et al (2000) Lesion heterogeneity in multiple sclerosis: a study of the relations between appearances on T1 weighted images, T1 relaxation times, and metabolite concentrations. J Neurol Neurosurg Psychiatry 68:627–632CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van Walderveen MA, Barkhof F, Pouwels PJ, van Schijndel RA, Polman CH, Castelijns JA (1999) Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 46:79–87CrossRefPubMedGoogle Scholar
  33. 33.
    Papadopoulos K, Tozer DJ, Fisniku L, Altmann DR, Davies G, Rashid W et al (2010) TI-relaxation time changes over five years in relapsing-remitting multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 16:427–433CrossRefGoogle Scholar
  34. 34.
    Molyneux PD, Filippi M, Barkhof F, Gasperini C, Yousry TA, Truyen L et al (1998) Correlations between monthly enhanced MRI lesion rate and changes in T2 lesion volume in multiple sclerosis. Ann Neurol 43:332–339CrossRefPubMedGoogle Scholar
  35. 35.
    Fazekas F, Bajenaru O, Berger T, Fabjan TH, Ledinek AH, Jakab G et al (2013) How does fingolimod (gilenya(®)) fit in the treatment algorithm for highly active relapsing-remitting multiple sclerosis? Front Neurol 4:10CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Nishikawa H, Yoshizaki K (1981) Nuclear magnetic resonance studies on brain edema--time course of 1H-NMR relaxation times (author's transl). Nō to Shinkei Brain Nerve 33:569–575PubMedGoogle Scholar
  37. 37.
    Miller DH, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250:1407–1419CrossRefPubMedGoogle Scholar
  38. 38.
    Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K et al (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79:523–530CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nöth U, Hattingen E, Bähr O, Tichy J, Deichmann R (2015) Improved visibility of brain tumors in synthetic MP-RAGE anatomies with pure T1 weighting. NMR Biomed 28:818–830CrossRefPubMedGoogle Scholar
  40. 40.
    Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJG, Reynolds R, Martin R (2015) Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci 16:147–158CrossRefPubMedGoogle Scholar
  41. 41.
    Pellicano C, Gallo A, Li X, Ikonomidou VN, Evangelou IE, Ohayon JM et al (2010) Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 67:447–453CrossRefPubMedGoogle Scholar
  42. 42.
    Gobbi C, Rocca MA, Riccitelli G, Pagani E, Messina R, Preziosa P et al (2014) Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Mult Scler (Houndmills, Basingstoke, Engl) 20:192–201CrossRefGoogle Scholar
  43. 43.
    Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66:1144–1150CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • René-Maxime Gracien
    • 1
    • 2
  • Sarah C. Reitz
    • 1
    • 2
  • Stephanie Michelle Hof
    • 1
    • 2
  • Vinzenz Fleischer
    • 3
    • 4
  • Hilga Zimmermann
    • 3
    • 4
  • Amgad Droby
    • 4
  • Helmuth Steinmetz
    • 1
  • Frauke Zipp
    • 3
    • 4
  • Ralf Deichmann
    • 2
  • Johannes C. Klein
    • 1
    • 2
  1. 1.Department of NeurologyUniversity Hospital, Goethe UniversityFrankfurt/MainGermany
  2. 2.Brain Imaging CenterUniversity Hospital, Goethe UniversityFrankfurt/MainGermany
  3. 3.Department of NeurologyUniversity Hospital, Gutenberg UniversityMainzGermany
  4. 4.Neuroimaging Center (NIC) of the Focus Program Translational Neuroscience (FTN)University Hospital, Gutenberg UniversityMainzGermany

Personalised recommendations