Advertisement

European Radiology

, Volume 26, Issue 8, pp 2567–2577 | Cite as

Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease

  • Koji KamagataEmail author
  • Taku Hatano
  • Ayami Okuzumi
  • Yumiko Motoi
  • Osamu Abe
  • Keigo Shimoji
  • Kouhei Kamiya
  • Michimasa Suzuki
  • Masaaki Hori
  • Kanako K. Kumamaru
  • Nobutaka Hattori
  • Shigeki Aoki
Neuro

Abstract

Objectives

We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD).

Methods

Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity.

Results

Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P < 0.00058). Vic and OD in the SNpc and putamen showed significant negative correlations (P < 0.05) with disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83).

Conclusion

NODDI is likely to be useful for diagnosing PD and assessing its progression.

Key Points

Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique

NODDI estimates neurite microstructure more specifically than diffusion tensor imaging

By using NODDI, nigrostriatal alterations in PD can be evaluated in vivo

NOODI is useful for diagnosing PD and assessing its disease progression

Keywords

Basal ganglia Diffusion MRI Neurodegenerative disorders Parkinson disease Substantia nigra pars compacta 

Abbreviations

DTI

Diffusion tensor imaging

DWI

Diffusion-weighted imaging

EPI

Echo-planar imaging

FA

Fractional anisotropy

MD

Mean diffusivity

NODDI

Neurite orientation dispersion and density imaging

OD

Orientation dispersion index

PD

Parkinson disease

rFOV

Rreduced field-of-view

ROC

Receiver operating characteristic

ROIs

Regions of interest

SNpc

Substantia nigra pars compacta

Vic

Intracellular volume fraction

Viso

Isotropic volume fraction

Notes

Acknowledgments

The scientific guarantor of this publication is Shigeki Aoki. The authors of this manuscript declare no relationships with any companies of which the products or services may be related to the subject matter of the article. This study has received funding by a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan and by MEXT/JSPS KAKENHI Grant Number 24591787. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported. Methodology: prospective, case-control study, performed at one institution.

Supplementary material

330_2015_4066_MOESM1_ESM.docx (16 kb)
Table S1 (DOCX 15 kb)
330_2015_4066_Fig5_ESM.gif (23 kb)
ESM 1

Relationship between intracellular volume fraction (Vic) in the contralateral putamen and disease duration. (GIF 23 kb)

330_2015_4066_MOESM2_ESM.tif (253 kb)
High Resolution Image (TIFF 252 kb)
330_2015_4066_Fig6_ESM.gif (23 kb)
ESM 2

Relationship between intracellular volume fraction (Vic) in the bilateral putamen and disease duration. (GIF 22 kb)

330_2015_4066_MOESM3_ESM.tif (214 kb)
High Resolution Image (TIFF 213 kb)
330_2015_4066_Fig7_ESM.gif (25 kb)
ESM 3

Relationship between orientation dispersion index (OD) in the bilateral putamen and disease duration (GIF 25 kb)

330_2015_4066_MOESM4_ESM.tif (262 kb)
High Resolution Image (TIFF 261 kb)
330_2015_4066_Fig8_ESM.gif (22 kb)
ESM 4

Relationship between intracellular volume fraction (Vic) in the contralateral putamen and UPDRS III–motor subscale score (GIF 22 kb)

330_2015_4066_MOESM5_ESM.tif (237 kb)
High Resolution Image (TIFF 237 kb)
330_2015_4066_Fig9_ESM.gif (23 kb)
ESM 5

Relationship between orientation dispersion index (OD) in the bilateral putamen and UPDRS III–motor subscale score (GIF 23 kb)

330_2015_4066_MOESM6_ESM.tif (242 kb)
High Resolution Image (TIFF 242 kb)

References

  1. 1.
    Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson's disease and Parkinson's disease dementia. Acta Neuropathol 120:131–143CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Patt S, Gertz HJ, Gerhard L, Cervos-Navarro J (1991) Pathological changes in dendrites of substantia nigra neurons in Parkinson’s disease: a Golgi study. Histol Histopathol 6:373–380PubMedGoogle Scholar
  3. 3.
    Zaja-Milatovic S, Milatovic D, Schantz AM et al (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547CrossRefPubMedGoogle Scholar
  4. 4.
    Deutch AY (2006) Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson's disease. J Neural Transm Suppl 70:67–70Google Scholar
  5. 5.
    Chan LL, Rumpel H, Yap K et al (2007) Case control study of diffusion tensor imaging in Parkinson's disease. J Neurol Neurosurg Psychiatry 78:1383–1386CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yoshikawa K, Nakata Y, Yamada K, Nakagawa M (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 75:481–484CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhan W, Kang GA, Glass GA et al (2012) Regional alterations of brain microstructure in Parkinson's disease using diffusion tensor imaging. Mov Disord 27:90–97CrossRefPubMedGoogle Scholar
  8. 8.
    Focke NK, Helms G, Pantel PM et al (2011) Differentiation of typical and atypical Parkinson syndromes by quantitative MR imaging. AJNR Am J Neuroradiol 32:2087–2092CrossRefPubMedGoogle Scholar
  9. 9.
    Menke RA, Scholz J, Miller KL et al (2009) MRI characteristics of the substantia nigra in Parkinson’s disease: a combined quantitative T1 and DTI study. Neuroimage 47:435–441CrossRefPubMedGoogle Scholar
  10. 10.
    Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61:1000–1016CrossRefPubMedGoogle Scholar
  12. 12.
    Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H (2014) Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res 108:336–339CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Billiet T, Madler B, D'Arco F et al (2014) Characterizing the microstructural basis of “unidentified bright objects” in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin 4:649–658CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilm BJ, Svensson J, Henning A, Pruessmann KP, Boesiger P, Kollias SS (2007) Reduced field-of-view MRI using outer volume suppression for spinal cord diffusion imaging. Magn Reson Med 57:625–630CrossRefPubMedGoogle Scholar
  15. 15.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841CrossRefPubMedGoogle Scholar
  17. 17.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254CrossRefPubMedGoogle Scholar
  18. 18.
    Du G, Lewis MM, Sen S et al (2012) Imaging nigral pathology and clinical progression in Parkinson's disease. Mov Disord 27:1636–1643CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Prakash BD, Sitoh YY, Tan LC, Au WL (2012) Asymmetrical diffusion tensor imaging indices of the rostral substantia nigra in Parkinson's disease. Parkinsonism Relat Disord 18:1029–1033CrossRefPubMedGoogle Scholar
  20. 20.
    Skorpil M, Soderlund V, Sundin A, Svenningsson P (2012) MRI diffusion in Parkinson’s disease: using the technique’s inherent directional information to study the olfactory bulb and substantia nigra. J Parkinsons Dis 2:171–180PubMedGoogle Scholar
  21. 21.
    Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30:1222–1226CrossRefPubMedGoogle Scholar
  22. 22.
    Menke RA, Jbabdi S, Miller KL, Matthews PM, Zarei M (2010) Connectivity-based segmentation of the substantia nigra in human and its implications in Parkinson's disease. Neuroimage 52:1175–1180CrossRefPubMedGoogle Scholar
  23. 23.
    Peran P, Cherubini A, Assogna F et al (2010) Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature. Brain 133:3423–3433CrossRefPubMedGoogle Scholar
  24. 24.
    Rolheiser TM, Fulton HG, Good KP et al (2011) Diffusion tensor imaging and olfactory identification testing in early-stage Parkinson's disease. J Neurol 258:1254–1260CrossRefPubMedGoogle Scholar
  25. 25.
    Wang JJ, Lin WY, Lu CS et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261:210–217CrossRefPubMedGoogle Scholar
  26. 26.
    Glantz SA, Slinker BK (2001) Primer of applied regression & analysis of variance, 2nd edn. McGraw-Hill, Medical Pub. Division, New YorkGoogle Scholar
  27. 27.
    Du G, Lewis MM, Styner M et al (2011) Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson's disease. Mov Disord 26:1627–1632CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906CrossRefPubMedGoogle Scholar
  29. 29.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24:197–211CrossRefPubMedGoogle Scholar
  30. 30.
    Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–28, discussion 28–30CrossRefPubMedGoogle Scholar
  31. 31.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301CrossRefPubMedGoogle Scholar
  32. 32.
    Peran P, Hagberg G, Luccichenti G et al (2007) Voxel-based analysis of R2* maps in the healthy human brain. J Magn Reson Imaging 26:1413–1420CrossRefPubMedGoogle Scholar
  33. 33.
    Abe O, Aoki S, Hayashi N et al (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441CrossRefPubMedGoogle Scholar
  34. 34.
    Acosta-Cabronero J, Williams GB, Pengas G, Nestor PJ (2010) Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease. Brain 133:529–539CrossRefPubMedGoogle Scholar
  35. 35.
    Seibyl J, Russell D, Jennings D, Marek K (2012) The molecular basis of dopaminergic brain imaging in Parkinson's disease. Q J Nucl Med Mol Imaging 56:4–16PubMedGoogle Scholar
  36. 36.
    Tatsch K, Schwarz J, Mozley PD et al (1997) Relationship between clinical features of Parkinson's disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 24:415–421PubMedGoogle Scholar
  37. 37.
    Bajaj N, Hauser RA, Grachev ID (2013) Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry 84:1288–1295CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440CrossRefPubMedGoogle Scholar
  39. 39.
    Schwarz ST, Abaei M, Gontu V, Morgan PS, Bajaj N, Auer DP (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • Koji Kamagata
    • 1
    Email author
  • Taku Hatano
    • 2
  • Ayami Okuzumi
    • 2
  • Yumiko Motoi
    • 2
  • Osamu Abe
    • 3
  • Keigo Shimoji
    • 4
  • Kouhei Kamiya
    • 5
  • Michimasa Suzuki
    • 1
  • Masaaki Hori
    • 1
  • Kanako K. Kumamaru
    • 1
  • Nobutaka Hattori
    • 2
  • Shigeki Aoki
    • 1
  1. 1.Department of RadiologyJuntendo University Graduate School of MedicineTokyoJapan
  2. 2.Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
  3. 3.Department of RadiologyNihon University School of MedicineTokyoJapan
  4. 4.Department of Diagnostic RadiologyTokyo Metropolitan Geriatric HospitalTokyoJapan
  5. 5.Department of Radiology, Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations