European Radiology

, Volume 26, Issue 6, pp 1921–1928 | Cite as

Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA

  • Lukas FilliEmail author
  • Marco Piccirelli
  • David Kenkel
  • Andreas Boss
  • Andrei Manoliu
  • Gustav Andreisek
  • Himanshu Bhat
  • Val M. Runge
  • Roman Guggenberger
Magnetic Resonance



To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA.

Materials and methods

After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25–32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm2; 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test.


Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm2/s; twofold acceleration: 1.016 ± 0.123 mm2/s; threefold acceleration: 0.979 ± 0.153 mm2/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004–0.021).


Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI.

Key Points

Standard DTI of the median nerve is limited by its long acquisition time.

Simultaneous multi-slice acquisition is a new technique for accelerated DTI.

Accelerated DTI of the median nerve yields similar results to standard DTI.


Diffusion tensor imaging Diffusion tractography Simultaneous multi-slice Echo-planar imaging Median nerve 



Controlled aliasing in parallel imaging results in higher acceleration


Distal radio-ulnar joint


Diffusion tensor imaging


Echo planar imaging


Fractional anisotropy


Fibre density index


Intra-class correlation coefficient


Mean diffusivity


Region of interest


Simultaneous multi-slice acquisition


Signal-to-noise ratio


Echo time


Repetition time



The authors kindly thank Heiko Meyer and Thomas Beck (both Siemens Healthcare, Erlangen, Germany) for providing them with the software for simultaneous multi-slice acquisition. The scientific guarantor of this publication is Roman Guggenberger, MD. Gustav Andreisek, MD, MBA, and Val M. Runge, MD, declare relationships with Siemens Healthcare, Erlangen, Germany. Himanshu Bhat, PhD is an employee of Siemens Medical Solutions USA Inc, Charlestown, MA, United States. These companies had no influence on the present study. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects in this study. Methodology: prospective, experimental, performed at one institution.


  1. 1.
    Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 15:456–467CrossRefPubMedGoogle Scholar
  3. 3.
    Mattiello J, Basser PJ, Le Bihan D (1997) The b matrix in diffusion tensor echo-planar imaging. Magn Reson Med 37:292–300CrossRefPubMedGoogle Scholar
  4. 4.
    Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632CrossRefPubMedGoogle Scholar
  5. 5.
    Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234CrossRefPubMedGoogle Scholar
  6. 6.
    Baumer P, Kele H, Kretschmer T et al (2014) Thoracic outlet syndrome in 3T MR neurography-fibrous bands causing discernible lesions of the lower brachial plexus. Eur Radiol 24:756–761CrossRefPubMedGoogle Scholar
  7. 7.
    Schwarz D, Weiler M, Pham M, Heiland S, Bendszus M, Baumer P (2015) Diagnostic signs of motor neuropathy in MR neurography: nerve lesions and muscle denervation. Eur Radiol 25:1497–1503CrossRefPubMedGoogle Scholar
  8. 8.
    Kasper JM, Wadhwa V, Scott KM, Rozen S, Xi Y, Chhabra A (2015) SHINKEI--a novel 3D isotropic MR neurography technique: technical advantages over 3DIRTSE-based imaging. Eur Radiol 25:1672–1677CrossRefPubMedGoogle Scholar
  9. 9.
    Jengojan S, Kovar F, Breitenseher J, Weber M, Prayer D, Kasprian G (2015) Acute radial nerve entrapment at the spiral groove: detection by DTI-based neurography. Eur Radiol 25:1678–1683CrossRefPubMedGoogle Scholar
  10. 10.
    Andreisek G, White LM, Kassner A, Sussman MS (2010) Evaluation of diffusion tensor imaging and fiber tractography of the median nerve: preliminary results on intrasubject variability and precision of measurements. AJR Am J Roentgenol 194:W65–W72CrossRefPubMedGoogle Scholar
  11. 11.
    Andreisek G, White LM, Kassner A, Tomlinson G, Sussman MS (2009) Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value. Skelet Radiol 38:51–59CrossRefGoogle Scholar
  12. 12.
    Guggenberger R, Eppenberger P, Markovic D et al (2012) MR neurography of the median nerve at 3.0T: optimization of diffusion tensor imaging and fiber tractography. Eur J Radiol 81:e775–e782CrossRefPubMedGoogle Scholar
  13. 13.
    Guggenberger R, Markovic D, Eppenberger P et al (2012) Assessment of median nerve with MR neurography by using diffusion-tensor imaging: normative and pathologic diffusion values. Radiology 265:194–203CrossRefPubMedGoogle Scholar
  14. 14.
    Guggenberger R, Nanz D, Bussmann L et al (2013) Diffusion tensor imaging of the median nerve at 3.0 T using different MR scanners: agreement of FA and ADC measurements. Eur J Radiol 82:e590–e596CrossRefPubMedGoogle Scholar
  15. 15.
    Barcelo C, Faruch M, Lapegue F, Bayol MA, Sans N (2013) 3-T MRI with diffusion tensor imaging and tractography of the median nerve. Eur Radiol 23:3124–3130CrossRefPubMedGoogle Scholar
  16. 16.
    Hiltunen J, Suortti T, Arvela S, Seppa M, Joensuu R, Hari R (2005) Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 116:2315–2323CrossRefPubMedGoogle Scholar
  17. 17.
    Khalil C, Hancart C, Le Thuc V, Chantelot C, Chechin D, Cotten A (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291CrossRefPubMedGoogle Scholar
  18. 18.
    Lindberg PG, Feydy A, Le Viet D, Maier MA, Drape JL (2013) Diffusion tensor imaging of the median nerve in recurrent carpal tunnel syndrome - initial experience. Eur Radiol 23:3115–3123CrossRefPubMedGoogle Scholar
  19. 19.
    Naraghi A, da Gama LL, Menezes R et al (2013) Diffusion tensor imaging of the median nerve before and after carpal tunnel release in patients with carpal tunnel syndrome: feasibility study. Skelet Radiol 42:1403–1412CrossRefGoogle Scholar
  20. 20.
    Stein D, Neufeld A, Pasternak O et al (2009) Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects. J Magn Reson Imaging 29:657–662CrossRefPubMedGoogle Scholar
  21. 21.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  22. 22.
    Feinberg DA, Crooks LE, Hoenninger JC et al (1986) Contiguous thin multisection MR imaging by two-dimensional Fourier transform techniques. Radiology 158:811–817CrossRefPubMedGoogle Scholar
  23. 23.
    Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317CrossRefPubMedGoogle Scholar
  24. 24.
    Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691CrossRefPubMedGoogle Scholar
  25. 25.
    Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Eichner C, Jafari-Khouzani K, Cauley S et al (2014) Slice accelerated gradient-echo spin-echo dynamic susceptibility contrast imaging with blipped CAIPI for increased slice coverage. Magn Reson Med 72:770–778CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chang WT, Setsompop K, Ahveninen J, Belliveau JW, Witzel T, Lin FH (2014) Improving the spatial resolution of magnetic resonance inverse imaging via the blipped-CAIPI acquisition scheme. NeuroImage 91:401–411CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Roberts TP, Liu F, Kassner A, Mori S, Guha A (2005) Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. AJNR Am J Neuroradiol 26:2183–2186PubMedGoogle Scholar
  29. 29.
    Price RR, Axel L, Morgan T et al (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17:287–295CrossRefPubMedGoogle Scholar
  30. 30.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  31. 31.
    Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820CrossRefPubMedGoogle Scholar
  32. 32.
    Lau AZ, Tunnicliffe EM, Frost R, Koopmans PJ, Tyler DJ, Robson MD (2014) Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn Reson Med. doi: 10.1002/mrm.25200 Google Scholar
  33. 33.
    Paley MN, Lee KJ, Wild JM, Griffiths PD, Whitby EH (2006) Simultaneous parallel inclined readout image technique. Magn Reson Imaging 24:557–562CrossRefPubMedGoogle Scholar
  34. 34.
    Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63:569–580CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gambarota G, Mekle R, Mlynarik V, Krueger G (2009) NMR properties of human median nerve at 3 T: proton density, T1, T2, and magnetization transfer. J Magn Reson Imaging 29:982–986CrossRefPubMedGoogle Scholar
  36. 36.
    Skorpil M, Engstrom M, Nordell A (2007) Diffusion-direction-dependent imaging: a novel MRI approach for peripheral nerve imaging. Magn Reson Imaging 25:406–411CrossRefPubMedGoogle Scholar
  37. 37.
    Sinha S, Sinha U, Edgerton VR (2006) In vivo diffusion tensor imaging of the human calf muscle. J Magn Reson Imaging 24:182–190CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • Lukas Filli
    • 1
    Email author
  • Marco Piccirelli
    • 2
  • David Kenkel
    • 1
  • Andreas Boss
    • 1
  • Andrei Manoliu
    • 1
  • Gustav Andreisek
    • 1
  • Himanshu Bhat
    • 3
  • Val M. Runge
    • 1
  • Roman Guggenberger
    • 1
  1. 1.Institute of Diagnostic and Interventional RadiologyUniversity Hospital of Zurich, University of ZurichZurichSwitzerland
  2. 2.Department of NeuroradiologyUniversity Hospital of ZurichZurichSwitzerland
  3. 3.Siemens Medical Solutions USA IncCharlestownUSA

Personalised recommendations