Advertisement

European Radiology

, Volume 26, Issue 6, pp 1889–1894 | Cite as

Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI

  • Simon Matoori
  • Johannes M. Froehlich
  • Stefan Breitenstein
  • Aleksis Doert
  • Viktoria Pozdniakova
  • Dow-Mu Koh
  • Andreas GutzeitEmail author
Magnetic Resonance

Abstract

Objectives

To identify correlations of signal enhancements (SE) and SE normalized to reference tissues of the spleen, kidney, liver, musculus erector spinae (MES) and ductus hepatocholedochus (DHC) on hepatobiliary phase gadoxetate-enhanced MRI with patient age in non-cirrhotic patients.

Methods

A heterogeneous cohort of 131 patients with different clinical backgrounds underwent a standardized 3.0-T gadoxetate-enhanced liver MRI between November 2008 and June 2013. After exclusion of cirrhotic patients, a cohort of 75 patients with no diagnosed diffuse liver disease was selected. The ratio of signal intensity 20 min post- to pre-contrast administration (SE) in the spleen, kidney, liver, MES and DHC, and the SE of the kidney, liver and DHC normalized to the reference tissues spleen or MES were compared to patient age.

Results

Patient age was inversely correlated with the liver SE normalized to the spleen and MES SE (both p < 0.001) and proportionally with the SE of the spleen (p = 0.043), the MES (p = 0.030) and the kidney (p = 0.022). No significant correlations were observed for the DHC (p = 0.347) and liver SE (p = 0.606).

Conclusion

The age dependence of hepatic SE normalized to the enhancement in the spleen and MES calls for a cautious interpretation of these quantification methods.

Key Points

Patient age was inversely correlated with spleen- and MES-corrected liver rSE (p < 0.001).

Patient age was correlated with spleen (p = 0.043) and MES SE (p = 0.030).

Patient age may confound quantitative liver function assessment using gadoxetate-enhanced liver MRI.

Keywords

MRI Gd-EOB-DTPA Patient age Liver Spleen 

Notes

Acknowledgments

We would like to thank the professional biostatistician Nicole Graf (www.biostatistics.ch) for statistical support. The scientific guarantor of this publication is Andreas Gutzeit. The authors of this manuscript declare relationships with the following companies: Johannes M. Froehlich works as a consultant for a contrast media company. The other authors had full control of data and information that might have represented a conflict of interest for the author who is a consultant of a company.

The authors state that this work has not received any funding. The professional biostatistician Nicole Graf (www.biostatistics.ch) kindly provided statistical advice for this manuscript. The institutional review board had generally approved retrospective studies. Written informed consent concerning anonymized data evaluation had been obtained from all subjects (patients) in this study.

Study subjects or cohorts have not been published elsewhere. Methodology: retrospective, observational, performed at one institution.

Supplementary material

330_2015_3965_MOESM1_ESM.docx (12 kb)
Table S1 (DOCX 12 kb)

References

  1. 1.
    Morana G, Salviato E, Guarise A (2007) Contrast agents for hepatic MRI. Cancer Imaging 7:S24–S27CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57:421–429CrossRefPubMedGoogle Scholar
  3. 3.
    Lee NK, Kim S, Lee JW et al (2009) Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics 29:1707–1724CrossRefPubMedGoogle Scholar
  4. 4.
    Kukuk G, Schaefer S, Fimmers R et al (2014) Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests. Eur Rad 24(10):2482–2490CrossRefGoogle Scholar
  5. 5.
    Motosugi U, Ichikawa T, Sou H et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? JMRI 30:1042–1046CrossRefPubMedGoogle Scholar
  6. 6.
    Yamada A, Hara T, Li F et al (2011) Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 260:727–733CrossRefPubMedGoogle Scholar
  7. 7.
    Katsube T, Okada M, Kumano S et al (2012) Estimation of liver function using T2* mapping on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging. Eur J Radiol 81:1460–1464CrossRefPubMedGoogle Scholar
  8. 8.
    Nishie A, Ushijima Y, Tajima T et al (2012) Quantitative analysis of liver function using superparamagnetic iron oxide- and Gd-EOB-DTPA-enhanced MRI: comparison with technetium-99m galactosyl serum albumin scintigraphy. Eur J Radiol 81:1100–1104CrossRefPubMedGoogle Scholar
  9. 9.
    Nilsson H, Blomqvist L, Douglas L et al (2013) Gd-EOB-DTPA-enhanced MRI for the assessment of liver function and volume in liver cirrhosis. Br J Radiol 86:20120653CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Haimerl M, Verloh N, Fellner C et al (2014) MRI-based estimation of liver function: Gd-EOB-DTPA-enhanced T1 relaxometry of 3T vs. the MELD score. Sci Rep 4:5621CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kubota KEI, Tamura T, Aoyama N et al (2012) Correlation of liver parenchymal gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid enhancement and liver function in humans with hepatocellular carcinoma. Oncol Lett 3:990–994PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nilsson H, Blomqvist L, Douglas L, Nordell A, Jonas E (2010) Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB 12:567–576CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saito K, Ledsam J, Sourbron S et al (2013) Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. JMRI 37:1109–1114CrossRefPubMedGoogle Scholar
  14. 14.
    Yoneyama T, Fukukura Y, Kamimura K et al (2014) Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function. Eur Radiol 24:857–865CrossRefPubMedGoogle Scholar
  15. 15.
    Kamimura K, Fukukura Y, Yoneyama T et al (2014) Quantitative evaluation of liver function with T1 relaxation time index on Gd-EOB-DTPA-enhanced MRI: comparison with signal intensity-based indices. J Magn Reson Imaging 40:884–889CrossRefPubMedGoogle Scholar
  16. 16.
    Ding Y, Rao S-X, Chen C, Li R, Zeng M-S (2015) Assessing liver function in patients with HBV-related HCC: a comparison of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI. Eur Radiol 25:1392–1398CrossRefPubMedGoogle Scholar
  17. 17.
    Leonhardt M, Keiser M, Oswald S et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028CrossRefPubMedGoogle Scholar
  18. 18.
    Geier A, Kim SK, Gerloff T et al (2002) Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride. J Hepatol 37:198–205CrossRefPubMedGoogle Scholar
  19. 19.
    Geier A, Dietrich CG, Voigt S et al (2003) Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38:345–354CrossRefPubMedGoogle Scholar
  20. 20.
    Tsuda N, Okada M, Murakami T (2007) Potential of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for differential diagnosis of nonalcoholic steatohepatitis and fatty liver in rats using magnetic resonance imaging. Invest Radiol 42:242–247CrossRefPubMedGoogle Scholar
  21. 21.
    Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi—gadoxetic acid-enhanced MR imaging. Radiology 256:767–773CrossRefPubMedGoogle Scholar
  22. 22.
    Tsuda N, Matsui O (2011) Signal profile on Gd-EOB-DTPA-enhanced MR imaging in non-alcoholic steatohepatitis and liver cirrhosis induced in rats: correlation with transporter expression. Eur Radiol 21:2542–2550CrossRefPubMedGoogle Scholar
  23. 23.
    Mori T, Okanoue T, Sawa Y, Hori N, Ohta M, Kagawa K (1993) Defenestration of the sinusoidal endothelial cell in a rat model of cirrhosis. Hepatology 17:891–897CrossRefPubMedGoogle Scholar
  24. 24.
    Joseph AEA, Saverymuttu SH, Al-Sam S, Cook MG, Maxwell JD (1991) Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease. Clin Radiol 43:26–31CrossRefPubMedGoogle Scholar
  25. 25.
    Turnheim K (1998) Drug dosage in the elderly. Drugs Aging 13:357–379CrossRefPubMedGoogle Scholar
  26. 26.
    Schmucker D (2001) Liver function and phase I drug metabolism in the elderly. Drugs Aging 18:837–851CrossRefPubMedGoogle Scholar
  27. 27.
    Mooij MG, Schwarz UI, de Koning BAE et al (2014) Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos 42:1268–1274CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gschwend S, Ebert W, Schultze-Mosgau M, Breuer J (2011) Pharmacokinetics and imaging properties of Gd-EOB-DTPA in patients with hepatic and renal impairment. Invest Radiol 46:556–566CrossRefPubMedGoogle Scholar
  29. 29.
    Verloh N, Haimerl M, Zeman F et al (2015) Multivariable analysis of clinical influence factors on liver enhancement of Gd-EOB-DTPA-enhanced 3T. Röfo 187:29–35PubMedGoogle Scholar
  30. 30.
    Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18:587–595CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • Simon Matoori
    • 1
    • 2
  • Johannes M. Froehlich
    • 2
    • 3
    • 4
  • Stefan Breitenstein
    • 5
  • Aleksis Doert
    • 4
  • Viktoria Pozdniakova
    • 6
  • Dow-Mu Koh
    • 7
  • Andreas Gutzeit
    • 1
    • 2
    • 4
    Email author
  1. 1.Department of RadiologyParacelsus Medical University SalzburgSalzburgAustria
  2. 2.Clinical Research GroupHirslanden Clinic St. AnnaLucerneSwitzerland
  3. 3. Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
  4. 4.Department of RadiologyCantonal Hospital WinterthurWinterthurSwitzerland
  5. 5.Department of Surgery, Clinic for Visceral and Thoracic SurgeryCantonal Hospital WinterthurWinterthurSwitzerland
  6. 6.Department of RadiologyStavanger University HospitalStavangerNorway
  7. 7.Department of RadiologyRoyal Marsden HospitalSurreyUK

Personalised recommendations