Advertisement

European Radiology

, Volume 26, Issue 3, pp 910–920 | Cite as

Molecular magnetic resonance imaging of atherosclerotic vessel wall disease

  • Dominik Nörenberg
  • Hans U. Ebersberger
  • Gerd Diederichs
  • Bernd Hamm
  • René M. Botnar
  • Marcus R. Makowski
Molecular Imaging

Abstract

Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies.

Key Points

Targeted MR-probes allow the characterization of atherosclerosis on a molecular level.

Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques.

Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

Keywords

Molecular imaging Magnetic resonance imaging Atherosclerotic vessel wall disease MRI contrast agents Cardiovascular disease 

Notes

Acknowledgments

The scientific guarantor of this publication is D. Noerenberg.

The authors (B.H.) of this manuscript declare relationships with the following companies:

Abbott, Actelion Pharmaceuticals, Bayer Schering Pharma, Bayer Vital, BRACCO Group, Bristol-Myers Squibb, Chante research organisation GmbH, Deutsche Krebshilfe, Dt. Stiftung für Herzforschung, Essex Pharma, EU Programmes, Fibrex Medical Inc., Focused Ultrasound Surgery Foundation, Fraunhofer Gesellschaft,Guerbet, INC Research, lnSightec Ud., IPSEN Pharma, Kendlel MorphoSys AG, Lilly GmbH, Lundbeck GmbH, MeVis Medical Solutions AG, Nexus Oncology, Novartis, Parexel CRO Service, Perceptive, Pfizer GmbH, Philipps, sanofis-aventis S.A, Siemens, Spectranetics GmbH, Terumo Medical Corporation, TNS Healthcare GMbH, Toshiba, UCB Pharma, Wyeth Pharma, Zukunftsfond Berlin (TSB), Amgen, AO Foundation, BARD, BBraun (Sponsoring eines Workshops), Boehring Ingelheimer, Brainsgate, PPD (CRO), CELLACT Pharma, Celgene, CeloNova BioSciences, Covance, DC Devices, Inc. USA, Ganymed, Gilead Sciences, Glaxo Smith Kline, ICON (CRO), Jansen, LUX Biosciences, MedPass (CRO), Merck, Mologen, Nuvisan, Pluristem, Quintiles (CRO), Roche, Schumacher GmbH (Sponsoring eines Workshops), Seattle Genetics, Symphogen, TauRx Therapeutics Ud,, Accovion, AIO: Arbeitsgemeinschaft Internistische Onkologie, ASR Advanced sleep research, Astellas, Theradex, Galena Biopharma, Chiltern, PRAint, lnspiremd, Medronic, Respicardia, Silena Therapeutics, Spectrum Pharmaceuticals, St, Jude Medical, TEVA, Theorem, abbvie, Aesculap, biotronik, Inventivhealth, ISA Therapeutics, LYSARC, MSD, novocure, Ockham oncology, Premier-research, psi-cro, tetec-ag, winicker-norimed.

The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required. Methodology: retrospective/review article.

Supplementary material

330_2015_3881_MOESM1_ESM.docx (908 kb)
Supplementary Fig. 1 (DOCX 800 kb)
330_2015_3881_MOESM2_ESM.docx (159 kb)
Supplementary Table 1 (DOCX 73 kb)

References

  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM et al (2011) Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation 123:e18–e209PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS (2002) Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol 7:40–53PubMedCentralPubMedGoogle Scholar
  3. 3.
    Ambrose JA, Tannenbaum MA, Alexopoulos D et al (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62CrossRefPubMedGoogle Scholar
  4. 4.
    Varnava AM, Mills PG, Davies MJ (2002) Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105:939–943CrossRefPubMedGoogle Scholar
  5. 5.
    Glagov S, Weisenberg E, Zarins C, Stankunavicius R, Kolettis G (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375CrossRefPubMedGoogle Scholar
  6. 6.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R (1998) Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97:2110–2116CrossRefPubMedGoogle Scholar
  7. 7.
    Cocker MS, Mc Ardle B, Spence JD et al (2012) Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see. J Nucl Cardiol 19:1211–1225PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Dweck MR, Chow MW, Joshi NV et al (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59:1539–1548CrossRefPubMedGoogle Scholar
  9. 9.
    Rosenbaum D, Millon A, Fayad ZA (2012) Molecular imaging in atherosclerosis: FDG PET. Curr Atheroscler Rep 14:429–437PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Coli S, Magnoni M, Sangiorgi G et al (2008) Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol 52:223–230CrossRefPubMedGoogle Scholar
  11. 11.
    Esposito L, Saam T, Heider P et al (2010) MRI plaque imaging reveals high-risk carotid plaques especially in diabetic patients irrespective of the degree of stenosis. BMC Med Imaging 10:27PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Saam T, Underhill HR, Chu B et al (2008) Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J Am Coll Cardiol 51:1014–1021CrossRefPubMedGoogle Scholar
  13. 13.
    Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587CrossRefPubMedGoogle Scholar
  14. 14.
    Fayad ZA, Fuster V, Fallon JT et al (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510CrossRefPubMedGoogle Scholar
  15. 15.
    Corti R, Fuster V, Fayad ZA et al (2005) Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with highresolution magnetic resonance imaging. J Am Coll Cardiol 46:106–112CrossRefPubMedGoogle Scholar
  16. 16.
    Nahrendorf M, Jaffer FA, Kelly KA et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511CrossRefPubMedGoogle Scholar
  17. 17.
    Sirol M, Moreno P, Purushothaman K et al (2009) Increased Neovascularization in Advanced Lipid-Rich Atherosclerotic Lesions Detected by Gadofluorine-M-Enhanced MRI: Implications for Plaque Vulnerability. Circ Cardiovasc Imaging 2:391–396PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Wagner S, Schnorr J, Ludwig A et al (2013) Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization. Int J Nanomedicine 8:767–779PubMedCentralPubMedGoogle Scholar
  19. 19.
    Cormode DP, Frias JC, Ma Y et al (2009) HDL as a contrast agent for medical imaging. Clin Lipidol 4:493–500PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Chen W, Vucic E, Leupold E et al (2008) Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging 3:233–242CrossRefPubMedGoogle Scholar
  21. 21.
    Pedersen SF, Thrysoe SA, Paaske WP et al (2011) CMR assessment of endothelial damage and angiogenesis in porcine coronary arteries using gadofosveset. J Cardiovasc Magn Reson 13:10PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Andia ME, Saha P, Jenkins J et al (2014) Fibrin-Targeted Magnetic Resonance Imaging Allows In Vivo Quantification of Thrombus Fibrin Content and Identifies Thrombi Amenable for Thrombolysis. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.113.302931 PubMedCentralPubMedGoogle Scholar
  23. 23.
    Wu X, Balu N, Li W et al (2013) Molecular MRI of atherosclerotic plaque progression in an ApoE(−/−) mouse model with a CLT1 peptide targeted macrocyclic Gd(III) chelate. Am J Nucl Med Mol Imaging 3:446–455PubMedCentralPubMedGoogle Scholar
  24. 24.
    Vymazal J, Spuentrup E, Cardenas-Molina G et al (2009) Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Investig Radiol 44:697–704CrossRefGoogle Scholar
  25. 25.
    Botnar RM, Buecker A, Wiethoff AJ et al (2004) In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 110:1463–1466CrossRefPubMedGoogle Scholar
  26. 26.
    Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325CrossRefPubMedGoogle Scholar
  28. 28.
    Choudhury RP, Fuster V, Fayad ZA (2004) Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Discov 3:913–925CrossRefPubMedGoogle Scholar
  29. 29.
    Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235CrossRefPubMedGoogle Scholar
  30. 30.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev 99:2293–2352CrossRefPubMedGoogle Scholar
  31. 31.
    Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512CrossRefPubMedGoogle Scholar
  32. 32.
    Maiseyeu A, Mihai G, Kampfrath T et al (2009) Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 50:2157–2163PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM (2009) Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:311–323CrossRefPubMedGoogle Scholar
  34. 34.
    Amirbekian V, Lipinski MJ, Briley-Saebo KC et al (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A 104:961–966PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao X, Zhao H, Chen Z, Lan M (2014) Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol 14:210–220CrossRefPubMedGoogle Scholar
  37. 37.
    Briley-Saebo KC, Mani V, Hyafil F, Cornily JC, Fayad ZA (2008) Fractionated Feridex and positive contrast: in vivo MR imaging of atherosclerosis. Magn Reson Med 59:721–730CrossRefPubMedGoogle Scholar
  38. 38.
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422CrossRefPubMedGoogle Scholar
  39. 39.
    Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458CrossRefPubMedGoogle Scholar
  40. 40.
    Yilmaz A, Dengler MA, van der Kuip H et al (2013) Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach. Eur Heart J 34:462–475CrossRefPubMedGoogle Scholar
  41. 41.
    Fukumura D, Gohongi T, Kadambi A et al (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98:2604–2609PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Hays AG, Hirsch GA, Kelle S, Gerstenblith G, Weiss RG, Stuber M (2010) Noninvasive Visualization of Coronary Artery Endothelial Function in Healthy Subjects and in Patients With Coronary Artery Disease. J Am Coll Cardiol 56:1657–1665CrossRefPubMedGoogle Scholar
  43. 43.
    Lobbes MB, Heeneman S, Passos VL et al (2010) Gadofosveset-enhanced magnetic resonance imaging of human carotid atherosclerotic plaques: a proof-of-concept study. Investig Radiol 45:275–281CrossRefGoogle Scholar
  44. 44.
    Phinikaridou A, Andia ME, Protti A et al (2012) Noninvasive magnetic resonance imaging evaluation of endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. Circulation 126:707–719CrossRefPubMedGoogle Scholar
  45. 45.
    McAteer MA, Schneider JE, Ali ZA et al (2008) Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 28:77–83PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Katsuda S, Kaji T (2003) Atherosclerosis and extracellular matrix. J Atheroscler Thromb 10:267–274CrossRefPubMedGoogle Scholar
  47. 47.
    Korol RM, Canham PB, Liu L et al (2011) Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis. Photochem Photobiol 87:1164–1172CrossRefPubMedGoogle Scholar
  48. 48.
    Jeremias A, Spies C, Herity NA et al (2000) Coronary artery compliance and adaptive vessel remodelling in patients with stable and unstable coronary artery disease. Heart 84:314–319PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    von Bary C, Makowski M, Preissel A et al (2011) MRI of Coronary Wall Remodeling in a Swine Model of Coronary Injury Using an Elastin-Binding Contrast Agent. Circ Cardiovasc Imaging 4:147–155CrossRefGoogle Scholar
  50. 50.
    Makowski MR, Wiethoff AJ, Blume U et al (2011) Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17:383–388CrossRefPubMedGoogle Scholar
  51. 51.
    Makowski MR, Preissel A, von Bary C et al (2012) Three-Dimensional Imaging of the Aortic Vessel Wall Using an Elastin-Specific Magnetic Resonance Contrast Agent. Investig Radiol 47:438–444CrossRefGoogle Scholar
  52. 52.
    Ronald JA, Chen Y, Belisle AJ et al (2009) Comparison of gadofluorine-M and Gd-DTPA for noninvasive staging of atherosclerotic plaque stability using MRI. Circ Cardiovasc Imaging 2:226–234PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Sirol M, Itskovich VV, Mani V et al (2004) Lipid-rich atherosclerotic plaques detected by gadofluorineenhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896CrossRefPubMedGoogle Scholar
  54. 54.
    Tavora F, Cresswell N, Li L, Ripple M, Burke A (2010) Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology 42:15–22CrossRefPubMedGoogle Scholar
  55. 55.
    Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872CrossRefPubMedGoogle Scholar
  56. 56.
    Spuentrup E, Botnar RM, Wiethoff A et al (1911) (2008) MR imaging of thrombi using EP-2104R, a fibrin specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005CrossRefGoogle Scholar
  57. 57.
    Durand E, Raynaud JS, Bruneval P et al (2007) Magnetic resonance imaging of ruptured plaques in the rabbit with ultrasmall superparamagnetic particles of iron oxide. J Vasc Res 44:119–128CrossRefPubMedGoogle Scholar
  58. 58.
    Morishige K, Kacher DF, Libby P et al (2010) High-resolution magnetic resonance imaging enhanced with superparamagnetic nanoparticles measures macrophage burden in atherosclerosis. Circulation 122:1707–1715PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    Schmitz SA, Coupland SE, Gust R et al (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Investig Radiol 35:460–471CrossRefGoogle Scholar
  60. 60.
    Sigovan M, Boussel L, Sulaiman A et al (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409CrossRefPubMedGoogle Scholar
  61. 61.
    Smith BR, Heverhagen J, Knopp M et al (2007) Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9:719–727CrossRefPubMedGoogle Scholar
  62. 62.
    Makowski MR, Varma G, Wiethoff A et al (2011) Non-Invasive Assessment of Atherosclerotic Plaque Progression in ApoE−/− Mice Using Susceptibility Gradient Mapping. Circ Cardiovasc Imaging. doi: 10.1161/CIRCIMAGING.110.957209 Google Scholar
  63. 63.
    Howarth SP, Tang TY, Trivedi R et al (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol 70:555–560CrossRefPubMedGoogle Scholar
  64. 64.
    Tang TY, Howarth SP, Miller SR et al (2007) Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques contralateral to symptomatic carotid stenosis: an ultra small superparamagnetic iron oxide enhanced magnetic resonance study. J Neurol Neurosurg Psychiatry 78:1337–1343PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Trivedi RA, Mallawarachi C, U-King-Im JM et al (2006) Identifying inflamed carotid plaques using in vivo USPIOenhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601–1606CrossRefPubMedGoogle Scholar
  66. 66.
    Howarth SP, Li ZY, Tang TY, Graves MJ, U-King-Im JM, Gillard JH (2008) In vivo positive contrast IRON sequence and quantitative T(2)* measurement confirms inflammatory burden in a patient with asymptomatic carotid atheroma after USPIO-enhanced MR imaging. J Vasc Interv Radiol 19:446–448CrossRefPubMedGoogle Scholar
  67. 67.
    Korosoglou G, Weiss RG, Kedziorek DA et al (2008) Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using "positive contrast" magnetic resonance imaging. J Am Coll Cardiol 52:483–491PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 55:126–135CrossRefPubMedGoogle Scholar
  69. 69.
    Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60:595–603PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Yamakoshi Y, Qiao H, Lowell AN et al (2011) LDL-based nanoparticles for contrast enhanced MRI of atheroplaques in mouse models. Chem Commun (Camb) 47:8835–8837CrossRefGoogle Scholar
  71. 71.
    Russell DA, Abbott CR, Gough MJ (2008) Vascular endothelial growth factor is associated with histological instability of carotid plaques. Br J Surg 95:576–581CrossRefPubMedGoogle Scholar
  72. 72.
    Virmani R, Kolodgie FD, Burke AP et al (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061CrossRefPubMedGoogle Scholar
  73. 73.
    Lobbes MB, Miserus RJ, Heeneman S et al (2009) Atherosclerosis: contrast-enhanced MR imaging of vessel wall in rabbit model--comparison of gadofosveset and gadopentetate dimeglumine. Radiology 250:682–691CrossRefPubMedGoogle Scholar
  74. 74.
    Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274CrossRefPubMedGoogle Scholar
  75. 75.
    Winter PM, Neubauer AM, Caruthers SD et al (2006) Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26:2103–2109CrossRefPubMedGoogle Scholar
  76. 76.
    Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116:59–69PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Lancelot E, Amirbekian V, Brigger I et al (2008) Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 28:425–432CrossRefPubMedGoogle Scholar
  78. 78.
    Hyafil F, Vucic E, Cornily JC et al (2011) Monitoring of arterial wall remodelling in atherosclerotic rabbits with a magnetic resonance imaging contrast agent binding to matrix metalloproteinases. Eur Heart J 32:1561–1571PubMedCentralCrossRefPubMedGoogle Scholar
  79. 79.
    Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111CrossRefPubMedGoogle Scholar
  80. 80.
    Ronald JA, Chen JW, Chen Y et al (2009) Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120:592–599PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Jaffer FA, Libby P, Weissleder R (2006) Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 47:1328–1338CrossRefPubMedGoogle Scholar
  82. 82.
    van Tilborg GA, Vucic E, Strijkers GJ et al (2010) Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjug Chem 21:1794–1803PubMedCentralCrossRefPubMedGoogle Scholar
  83. 83.
    Frias JC, Ma Y, Williams KJ, Fayad ZA, Fisher EA (2006) Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging. Nano Lett 6:2220–2224CrossRefPubMedGoogle Scholar
  84. 84.
    Makowski MR, Botnar RM (2013) MR imaging of the arterial vessel wall: molecular imaging from bench to bedside. Radiology 269:34–51CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  1. 1.Department of RadiologyCharité – University Medicine BerlinBerlinGermany
  2. 2.Department of Cardiology and Intensive Care MedicineHeart Center Munich-BogenhausenMunichGermany
  3. 3.Division of Imaging Sciences and Biomedical EngineeringKing’s College LondonLondonUK
  4. 4.Department of Clinical RadiologyUniversity of Munich – GrosshadernMunichGermany

Personalised recommendations