Advertisement

European Radiology

, Volume 25, Issue 10, pp 3017–3024 | Cite as

Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas

  • Philipp Lohmann
  • Hans Herzog
  • Elena Rota Kops
  • Gabriele Stoffels
  • Natalie Judov
  • Christian Filss
  • Norbert Galldiks
  • Lutz Tellmann
  • Carolin Weiss
  • Michael Sabel
  • Heinz Hubert Coenen
  • Nadim Jon Shah
  • Karl-Josef LangenEmail author
Nuclear Medicine

Abstract

Objective

We aimed to evaluate the diagnostic potential of dual-time-point imaging with positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) for non-invasive grading of cerebral gliomas compared with a dynamic approach.

Methods

Thirty-six patients with histologically confirmed cerebral gliomas (21 primary, 15 recurrent; 24 high-grade, 12 low-grade) underwent dynamic PET from 0 to 50 min post-injection (p.i.) of 18F-FET, and additionally from 70 to 90 min p.i. Mean tumour-to-brain ratios (TBRmean) of 18F-FET uptake were determined in early (20–40 min p.i.) and late (70–90 min p.i.) examinations. Time–activity curves (TAC) of the tumours from 0 to 50 min after injection were assigned to different patterns. The diagnostic accuracy of changes of 18F-FET uptake between early and late examinations for tumour grading was compared to that of curve pattern analysis from 0 to 50 min p.i. of 18F-FET.

Results

The diagnostic accuracy of changes of the TBRmean of 18F-FET PET uptake between early and late examinations for the identification of HGG was 81 % (sensitivity 83 %; specificity 75 %; cutoff - 8 %; p < 0.001), and 83 % for curve pattern analysis (sensitivity 88 %; specificity 75 %; p < 0.001).

Conclusion

Dual-time-point imaging of 18F-FET uptake in gliomas achieves diagnostic accuracy for tumour grading that is similar to the more time-consuming dynamic data acquisition protocol.

Key Points

Dual-time-point imaging is equivalent to dynamic FET PET for grading of gliomas.

Dual-time-point imaging is less time consuming than dynamic FET PET.

Costs can be reduced due to higher patient throughput.

Reduced imaging time increases patient comfort and sedation might be avoided.

Quicker image interpretation is possible, as no curve evaluation is necessary.

Keywords

Cerebral glioma FET PET Tracer kinetics Dual-time-point imaging Tumour grade 

Abbreviations

11C-MET

L-[methyl-11C]-methionine

18F-FDOPA

3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine

18F-FET

O-(2-18F-fluoroethyl)-L-tyrosine

AUC

Area under receiver-operating-characteristic curve

HGG

High-grade glioma

LGG

Low-grade glioma

OP-OSEM

Ordinary Poisson ordered subset expectation maximisation

OSEM

Ordered subset expectation maximisation

ROC

Receiver-operating-characteristic

SUV

Standardised uptake value

SUVmean

Mean standardised uptake value

TAC

Time-activity curve

TBR

Tumour-to-brain ratio

TBRmean

Mean tumour-to-brain ratio

TTP

Time to peak

VOI

Volume-of-interest

Notes

Acknowledgments

The authors thank Suzanne Schaden, Elisabeth Theelen and Kornelia Frey for assistance in the patient studies; and Johannes Ermert, Silke Grafmüller, Erika Wabbals and Sascha Rehbein for radiosynthesis of 18F-FET. The scientific guarantor of this publication is Prof. Dr. Karl-Josef Langen. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic study, performed at one institution.

Supplementary material

330_2015_3691_MOESM1_ESM.doc (52 kb)
ESM 1 (DOC 52.5 kb)

References

  1. 1.
    Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42:356–370PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Heiss WD (2014) Clinical impact of amino acid PET in gliomas. J Nucl Med 55:1831–1841CrossRefPubMedGoogle Scholar
  3. 3.
    Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33:287–294CrossRefPubMedGoogle Scholar
  4. 4.
    McConathy J, Yu W, Jarkas N, Seo W, Schuster DM, Goodman MM (2012) Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 32:868–905CrossRefPubMedGoogle Scholar
  5. 5.
    Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M et al (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212PubMedGoogle Scholar
  6. 6.
    Swiss Agency for Therapeutic Products (2014) J Swissmedic 13:651Google Scholar
  7. 7.
    Dunet V, Rossier C, Buck A, Stupp R, Prior JO (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and Metaanalysis. J Nucl Med 53:207–214CrossRefPubMedGoogle Scholar
  8. 8.
    Galldiks N, Langen K, Holy R, Pinkawa M, Stoffels G, Nolte K et al (2012) Assessment of treatment response in patients with glioblastoma using [18F]Fluoroethyl-L-Tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057CrossRefPubMedGoogle Scholar
  9. 9.
    Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Muller HW et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefPubMedGoogle Scholar
  10. 10.
    Pauleit D, Stoffels G, Bachofner A, Floeth FW, Sabel M, Herzog H et al (2009) Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 36:779–787CrossRefPubMedGoogle Scholar
  11. 11.
    Pöpperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470Google Scholar
  12. 12.
    Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J et al (2014) Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 16:434–440PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Moulin-Romsee G, D'Hondt E, de Groot T, Goffin J, Sciot R, Mortelmans L et al (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087CrossRefPubMedGoogle Scholar
  14. 14.
    Weckesser M, Langen KJ, Rickert CH, Kloska S, Straeter R, Hamacher K et al (2005) O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429CrossRefPubMedGoogle Scholar
  15. 15.
    Paulus W, Peiffer J (1989) Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64:442–447CrossRefPubMedGoogle Scholar
  16. 16.
    Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13:307–316PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefPubMedGoogle Scholar
  18. 18.
    Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A et al (2011) [German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids]. Nuklearmedizin 50:167–173CrossRefPubMedGoogle Scholar
  19. 19.
    Herzog H, Langen KJ, Weirich C, Rota Kops E, Kaffanke J, Tellmann L et al (2011) High resolution BrainPET combined with simultaneous MRI. Nuklearmedizin 50:74–82CrossRefPubMedGoogle Scholar
  20. 20.
    Calcagni ML, Galli G, Giordano A, Taralli S, Anile C, Niesen A et al (2011) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 36:841–847CrossRefPubMedGoogle Scholar
  21. 21.
    Kim DW, Jung SA, Kim CG, Park SA (2010) The efficacy of dual time point F-18 FDG PET imaging for grading of brain tumors. Clin Nucl Med 35:400–403CrossRefPubMedGoogle Scholar
  22. 22.
    Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S et al (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52:865–872CrossRefPubMedGoogle Scholar
  23. 23.
    Pöpperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403PubMedGoogle Scholar
  24. 24.
    Pöpperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefPubMedGoogle Scholar
  25. 25.
    Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39:1021–1029CrossRefPubMedGoogle Scholar
  26. 26.
    Galldiks N, Stoffels G, Filss CP, Piroth MD, Sabel M, Ruge MI et al (2012) Role of O-(2-18F-Fluoroethyl)-L-Tyrosine PET for Differentiation of Local Recurrent Brain Metastasis from Radiation Necrosis. J Nucl Med 53:1367–1374CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2015

Authors and Affiliations

  • Philipp Lohmann
    • 1
  • Hans Herzog
    • 1
  • Elena Rota Kops
    • 1
  • Gabriele Stoffels
    • 1
  • Natalie Judov
    • 1
  • Christian Filss
    • 1
  • Norbert Galldiks
    • 1
    • 2
  • Lutz Tellmann
    • 1
  • Carolin Weiss
    • 3
  • Michael Sabel
    • 4
  • Heinz Hubert Coenen
    • 1
    • 6
  • Nadim Jon Shah
    • 1
    • 6
    • 7
  • Karl-Josef Langen
    • 1
    • 5
    • 6
    Email author
  1. 1.Institute of Neuroscience and MedicineForschungszentrum JülichJülichGermany
  2. 2.Department of NeurologyUniversity of CologneCologneGermany
  3. 3.Department of NeurosurgeryUniversity of CologneCologneGermany
  4. 4.Department of NeurosurgeryHeinrich-Heine UniversityDüsseldorfGermany
  5. 5.Department of Nuclear MedicineRWTH Aachen University HospitalAachenGermany
  6. 6.Jülich-Aachen Research Alliance (JARA) – Section JARA-BrainJülichGermany
  7. 7.Department of NeurologyRWTH Aachen University HospitalAachenGermany

Personalised recommendations