Advertisement

European Radiology

, Volume 25, Issue 6, pp 1541–1550 | Cite as

Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T

  • Jean-Pierre Cercueil
  • Jean-Michel Petit
  • Stéphanie Nougaret
  • Philippe Soyer
  • Audrey Fohlen
  • Marie-Ange Pierredon-Foulongne
  • Valentina Schembri
  • Elisabeth Delhom
  • Sabine Schmidt
  • Alban Denys
  • Serge Aho
  • Boris GuiuEmail author
Hepatobiliary-Pancreas

Abstract

Purpose

To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers.

Materials and methods

The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver.

Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria.

Results

The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10-3 mm2/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10-3 mm2/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10-3 mm2/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm2

Conclusion

The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm2 range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant.

Key Points

For normal liver, tri-exponential IVIM model might be superior to bi-exponential

A very fast compartment (D = 404.00 ± 43.7 × 10 -3  mm 2 /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model

The compartment contributes to the IVIM signal only for b ≤ 15 s/mm 2

Keywords

Diffusion-weighted imaging IVIM Liver Signal model MRI 

Notes

Acknowledgements

The scientific guarantor of this publication is Boris Guiu. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, performed at one institution.

References

  1. 1.
    Guiu B, Cercueil JP (2011) Liver diffusion-weighted MR imaging: the tower of Babel? Eur Radiol 21:463–467CrossRefPubMedGoogle Scholar
  2. 2.
    Guiu B, Petit JM, Capitan V et al (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265:96–103CrossRefPubMedGoogle Scholar
  3. 3.
    Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752CrossRefPubMedGoogle Scholar
  4. 4.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505CrossRefPubMedGoogle Scholar
  5. 5.
    Shah B, Anderson SW, Scalera J, Jara H, Soto JA (2011) Quantitative MR imaging: physical principles and sequence design in abdominal imaging. Radiographics 31:867–880CrossRefPubMedGoogle Scholar
  6. 6.
    Clark CA, Le Bihan D (2000) Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 44:852–859CrossRefPubMedGoogle Scholar
  7. 7.
    Andreou A, Koh DM, Collins DJ et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434CrossRefPubMedGoogle Scholar
  8. 8.
    Delattre BM, Viallon M, Wei H et al (2012) In vivo cardiac diffusion-weighted magnetic resonance imaging: quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Invest Radiol 47:662–670CrossRefPubMedGoogle Scholar
  9. 9.
    Dijkstra H, Baron P, Kappert P, Oudkerk M, Sijens PE (2012) Effects of microperfusion in hepatic diffusion weighted imaging. Eur Radiol 22:891–899CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Dyvorne HA, Galea N, Nevers T et al (2013) Diffusion-weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parameters–a pilot study. Radiology 266:920–929CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Hayashi T, Miyati T, Takahashi J et al (2013) Diffusion analysis with triexponential function in liver cirrhosis. J Magn Reson Imaging 38:148–153CrossRefPubMedGoogle Scholar
  12. 12.
    Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776CrossRefPubMedGoogle Scholar
  13. 13.
    Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249:891–899CrossRefPubMedGoogle Scholar
  14. 14.
    Pasquinelli F, Belli G, Mazzoni LN, Grazioli L, Colagrande S (2011) Magnetic resonance diffusion-weighted imaging: quantitative evaluation of age-related changes in healthy liver parenchyma. Magn Reson Imaging 29:805–812CrossRefPubMedGoogle Scholar
  15. 15.
    Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: Preliminary experience. J Magn Reson Imaging 31:589–600CrossRefPubMedGoogle Scholar
  16. 16.
    Ohtani O, Ohtani Y (2008) Lymph circulation in the liver. Anat Rec (Hoboken) 291:643–652CrossRefGoogle Scholar
  17. 17.
    Moteki T, Horikoshi H (2011) Evaluation of noncirrhotic hepatic parenchyma with and without significant portal vein stenosis using diffusion-weighted echo-planar MR on the basis of multiple-perfusion-components theory. Magn Reson Imaging 29:64–73CrossRefPubMedGoogle Scholar
  18. 18.
    Chandarana H, Taouli B (2010) Diffusion and perfusion imaging of the liver. Eur J Radiol 76:348–358CrossRefPubMedGoogle Scholar
  19. 19.
    Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR (2010) An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 64:1580–1585CrossRefPubMedGoogle Scholar
  20. 20.
    Guiu B, Loffroy R, Cercueil JP, Krause D (2008) Multiecho MR imaging andproton MR spectroscopy for liver fat quantification. Radiology 249:1081CrossRefPubMedGoogle Scholar
  21. 21.
    Guiu B, Loffroy R, Petit JM et al (2009) Mapping of liver fat with triple-echo gradient echo imaging: validation against 3.0-T proton MR spectroscopy. Eur Radiol 19:1786–1793CrossRefPubMedGoogle Scholar
  22. 22.
    Guiu B, Petit JM, Loffroy R et al (2009) Quantification of Liver Fat Content: Comparison of Triple-Echo Chemical Shift Gradient-Echo Imaging and in Vivo Proton MR Spectroscopy. Radiology 250:95–102CrossRefPubMedGoogle Scholar
  23. 23.
    Jacqueminet S, Lebray P, Morra R et al (2008) Screening for liver fibrosis by using a noninvasive biomarker in patients with diabetes. Clin Gastroenterol Hepatol 6:828–831CrossRefPubMedGoogle Scholar
  24. 24.
    Poynard T, Morra R, Halfon P et al (2007) Meta-analyses of FibroTest diagnostic value in chronic liver disease. BMC Gastroenterol 7:40CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Ratziu V, Massard J, Charlotte F et al (2006) Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol 6:6CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Pekar J, Ligeti L, Ruttner Z et al (1991) In vivo measurement of cerebral oxygen consumption and blood flow using 17O magnetic resonance imaging. Magn Reson Med 21:313–319CrossRefPubMedGoogle Scholar
  27. 27.
    Wirestam R, Brockstedt S, Lindgren A et al (1997) The perfusion fraction in volunteers and in patients with ischaemic stroke. Acta Radiol 38:961–964CrossRefPubMedGoogle Scholar
  28. 28.
    Williams RL (2000) A note on robust variance estimation for cluster-correlated data. Biometrics 56:645–646CrossRefPubMedGoogle Scholar
  29. 29.
    Motulsky H (2004) Fitting Models to Biological Data Using Linear and Nonlinear Regression : A Practical Guide to Curve FittingGoogle Scholar
  30. 30.
    Anderson DR (2008) Model based inference in the life sciences: a primer on evidence.Google Scholar
  31. 31.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407CrossRefPubMedGoogle Scholar
  32. 32.
    Rani HP, Sheu TW, Chang TM, Liang PC (2006) Numerical investigation of non-Newtonian microcirculatory blood flow in hepatic lobule. J Biomech 39:551–563CrossRefPubMedGoogle Scholar
  33. 33.
    Duong TQ, Kim SG (2000) In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magn Reson Med 43:393–402CrossRefPubMedGoogle Scholar
  34. 34.
    Hayashi T, Miyati T, Takahashi J et al (2014) Diffusion analysis with triexponential function in hepatic steatosis. Radiol Phys Technol 7:89–94CrossRefPubMedGoogle Scholar
  35. 35.
    Chow AM, Gao DS, Fan SJ et al (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 36:159–167CrossRefPubMedGoogle Scholar
  36. 36.
    Colagrande S, Pasquinelli F, Mazzoni LN, Belli G, Virgili G (2010) MR-diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging 31:912–920CrossRefPubMedGoogle Scholar
  37. 37.
    Guiu B, Petit JM, Loffroy R et al (2011) Liver methylene fraction by dual- and triple-echo gradient-echo imaging at 3.0 T: Correlation with proton MR spectroscopy and estimation of robustness after SPIO administration. J Magn Reson Imaging 33:119–127CrossRefPubMedGoogle Scholar
  38. 38.
    Hussain HK, Chenevert TL, Londy FJ et al (2005) Hepatic fat fraction: MR imaging for quantitative measurement and display–early experience. Radiology 237:1048–1055CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Jean-Pierre Cercueil
    • 1
    • 2
  • Jean-Michel Petit
    • 1
    • 3
  • Stéphanie Nougaret
    • 4
  • Philippe Soyer
    • 5
  • Audrey Fohlen
    • 6
  • Marie-Ange Pierredon-Foulongne
    • 4
  • Valentina Schembri
    • 4
  • Elisabeth Delhom
    • 4
  • Sabine Schmidt
    • 7
  • Alban Denys
    • 7
  • Serge Aho
    • 8
  • Boris Guiu
    • 4
    Email author
  1. 1.University of Burgundy, INSERM U866DijonFrance
  2. 2.Department of RadiologyCHU (University Hospital)DijonFrance
  3. 3.Department of Endocrinology, Diabetology, and Metabolic DiseasesCHU (University Hospital)DijonFrance
  4. 4.Department of RadiologySt-Eloi University HospitalMontpellierFrance
  5. 5.Department of Body and Interventional ImagingHôpital 1 Lariboisière, Assistance Publique Hôpitaux de ParisParis Cedex 10France
  6. 6.Department of RadiologyUniversity HospitalCaenFrance
  7. 7.Department of RadiologyCentre Hospitalier Universitaire VaudoisLausanneSwitzerland
  8. 8.Department of BiostatisticsCHU (University Hospital)DijonFrance

Personalised recommendations