European Radiology

, Volume 25, Issue 3, pp 883–893 | Cite as

An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

  • Hamza Alizai
  • Frank W. Roemer
  • Daichi Hayashi
  • Michel D. Crema
  • David T. Felson
  • Ali GuermaziEmail author


Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes’ scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems.

Key Points

Radiography is neither specific nor sensitive to progression of knee osteoarthritis

Semiquantitative MRI-based outcome measures are useful to identify knee osteoarthritis risk factors

Several MRI-based semiquantitative scoring systems for knee cartilage lesions are available


Magnetic resonance imaging Knee osteoarthritis Semiquantitative scores Risk factors Cartilage 



The scientific guarantor of this publication is Dr. Ali Guermazi. The authors of this manuscript declare relationships with the following companies: Drs. Ali Guermazi, Frank Roemer and Michel Crema are shareholders of Boston Imaging Core Lab (BICL). Dr. Ali Guermazi is a consultant for TissueGene, MerckSerono, and Sanofi-Aventis. This study has received funding by National Institutes of Health grant NIH AR47785. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required as this is a narrative review. Written informed consent was not required for this narrative review. Methodology: Narrative Review.


  1. 1.
    Prevention CfDCa (2010) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation. MMWR 59:1261–1265Google Scholar
  2. 2.
    Lawrence RC, Felson DT, Helmick CG et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58:26–35CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Bijlsma JW, Berenbaum F, Lafeber FP (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377:2115–2126CrossRefPubMedGoogle Scholar
  4. 4.
    Bay-Jensen A-C, Hoegh-Madsen S, Dam E et al (2010) Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol In 30:435–442CrossRefGoogle Scholar
  5. 5.
    Altman R, Alarcon G, Appelrouth D et al (1991) The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 34:505–514CrossRefPubMedGoogle Scholar
  6. 6.
    Boegard TL, Rudling O, Petersson IF, Jonsson K (2003) Joint space width of the tibiofemoral and of the patellofemoral joint in chronic knee pain with or without radiographic osteoarthritis: a 2-year follow-up. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:370–376CrossRefGoogle Scholar
  7. 7.
    Guermazi A, Roemer FW, Felson DT, Brandt KD (2013) Motion for debate: osteoarthritis clinical trials have not identified efficacious therapies because traditional imaging outcome measures are inadequate. Arthritis Rheum 65:2748–2758CrossRefPubMedGoogle Scholar
  8. 8.
    Lane NE, Brandt K, Hawker G et al (2011) OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 19:478–482CrossRefGoogle Scholar
  9. 9.
    Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers MF (2010) Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am J Phys Med Rehabil 89:541–548CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Hofmann GO, Marticke J, Grossstuck R et al (2010) Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8CrossRefPubMedGoogle Scholar
  11. 11.
    Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284PubMedGoogle Scholar
  12. 12.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A:58–69PubMedGoogle Scholar
  13. 13.
    Peterfy CG, Guermazi A, Zaim S et al (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil 12:177–190CrossRefPubMedGoogle Scholar
  14. 14.
    Hunter DJ, Zhang YQ, Niu JB et al (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54:795–801CrossRefPubMedGoogle Scholar
  15. 15.
    Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM (2010) Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr Cartil 18:776–786CrossRefPubMedGoogle Scholar
  16. 16.
    Hovis KK, Alizai H, Tham SC et al (2012) Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI). Skelet Radiol 41:1435–1443CrossRefGoogle Scholar
  17. 17.
    Hovis KK, Stehling C, Souza RB et al (2011) Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 63:2248–2256CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Laberge MA, Baum T, Virayavanich W et al (2012) Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects–data from the Osteoarthritis Initiative. Skelet Radiol 41:633–641CrossRefGoogle Scholar
  19. 19.
    Virayavanich W, Alizai H, Baum T et al (2013) Association of frequent knee bending activity with focal knee lesions detected with 3T magnetic resonance imaging: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 65:1441–1448CrossRefGoogle Scholar
  20. 20.
    Kornaat P, Ceulemans RT, Kroon H et al (2005) MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skelet Radiol 34:95–102CrossRefGoogle Scholar
  21. 21.
    Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G (2005) Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr Cartil 13:198–205CrossRefPubMedGoogle Scholar
  22. 22.
    Dore D, Martens A, Quinn S et al (2010) Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther 12:R222CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Dore DA, Winzenberg TM, Ding C et al (2013) The association between objectively measured physical activity and knee structural change using MRI. Ann Rheum Dis 72:1170–1175CrossRefPubMedGoogle Scholar
  24. 24.
    Berry PA, Wluka AE, Davies-Tuck ML et al (2010) The relationship between body composition and structural changes at the knee. Rheumatology. doi: 10.1093/rheumatology/keq255 Google Scholar
  25. 25.
    Wang Y, Wluka AE, English DR et al (2007) Body composition and knee cartilage properties in healthy, community-based adults. Ann Rheum Dis 66:1244–1248CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ding C, Martel-Pelletier J, Pelletier JP et al (2007) Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J Rheumatol 34:776–784PubMedGoogle Scholar
  27. 27.
    Roemer FW, Kwoh CK, Hannon MJ et al (2011) Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol 80:e126–e131CrossRefPubMedGoogle Scholar
  28. 28.
    Hayashi D, Guermazi A, Kwoh CK et al (2011) Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: a comparison between intermediate-weighted fat-suppressed spin echo and Dual Echo Steady State sequences. BMC Musculoskelet Disord 12:198CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skelet Radiol 32:396–402CrossRefGoogle Scholar
  30. 30.
    Conaghan PG, Tennant A, Peterfy CG et al (2006) Examining a whole-organ magnetic resonance imaging scoring system for osteoarthritis of the knee using Rasch analysis. Osteoarthr Cartil 14:A116–A121CrossRefPubMedGoogle Scholar
  31. 31.
    Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211CrossRefPubMedGoogle Scholar
  32. 32.
    Lynch JA, Roemer FW, Nevitt MC et al (2010) Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthr Cartil 18:1393–1401CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Felson DT, Lynch J, Guermazi A et al (2010) Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. Osteoarthr Cartil 18:1402–1407CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Hunter DJ, Guermazi A, Lo GH et al (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr Cartil 19:990–1002CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9:236–251CrossRefPubMedGoogle Scholar
  36. 36.
    Crema MD, Felson DT, Roemer FW et al (2013) Prevalent cartilage damage and cartilage loss over time are associated with incident bone marrow lesions in the tibiofemoral compartments: the MOST study. Osteoarthr Cartil 21:306–313CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Guermazi A, Hayashi D, Roemer FW et al (2014) Synovitis in Knee Osteoarthritis Assessed by Contrast-enhanced Magnetic Resonance Imaging (MRI) is Associated with Radiographic Tibiofemoral Osteoarthritis and MRI-detected Widespread Cartilage Damage: The MOST Study. J Rheumatol. doi: 10.3899/jrheum.130541 PubMedCentralGoogle Scholar
  38. 38.
    Roemer FW, Felson DT, Wang K et al (2013) Co-localisation of non-cartilaginous articular pathology increases risk of cartilage loss in the tibiofemoral joint—the MOST study. Ann Rheum Dis 72:942–948CrossRefPubMedGoogle Scholar
  39. 39.
    Roemer FW, Zhang Y, Niu J et al (2009) Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 252:772–780CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Zanetti M, Bruder E, Romero J, Hodler J (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215:835–840CrossRefPubMedGoogle Scholar
  41. 41.
    Roemer FW, Guermazi A, Javaid MK et al (2009) Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann Rheum Dis 68:1461–1465CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Hunter DJ, Zhang Y, Niu J et al (2006) Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 54:1529–1535CrossRefPubMedGoogle Scholar
  43. 43.
    Kothari A, Guermazi A, Chmiel JS et al (2010) Within-subregion relationship between bone marrow lesions and subsequent cartilage loss in knee osteoarthritis. Arthritis Care Res (Hoboken) 62:198–203Google Scholar
  44. 44.
    Roemer FW, Guermazi A, Felson DT et al (2011) Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 70:1804–1809CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Crema MD, Cibere J, Sayre EC et al (2014) The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: the knee osteoarthritis progression (KOAP) study. Osteoarthr Cartil. doi: 10.1016/j.joca.2014.01.006 Google Scholar
  46. 46.
    Spector TD, Harris PA, Hart DJ et al (1996) Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 39:988–995CrossRefPubMedGoogle Scholar
  47. 47.
    Cheng Y, Macera CA, Davis DR, Ainsworth BE, Troped PJ, Blair SN (2000) Physical activity and self-reported, physician-diagnosed osteoarthritis: Is physical activity a risk factor? J Clin Epidemiol 53:315–322CrossRefPubMedGoogle Scholar
  48. 48.
    Rogers LQ, Macera CA, Hootman JM, Ainsworth B, Blair SN (2002) The association between joint stress from physical activity and self-reported osteoarthritis: an analysis of the Cooper clinic data. Osteoarthr Cartil 10:617–622CrossRefPubMedGoogle Scholar
  49. 49.
    Racunica TL, Teichtahl AJ, Wang Y et al (2007) Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum 57:1261–1268CrossRefPubMedGoogle Scholar
  50. 50.
    Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514CrossRefPubMedGoogle Scholar
  51. 51.
    Teichtahl AJ, Wluka AE, Wang Y et al (2012) Effect of long-term vigorous physical activity on healthy adult knee cartilage. Med Sci Sports Exerc 44:985–992CrossRefPubMedGoogle Scholar
  52. 52.
    Teichtahl AJ, Wluka AE, Forbes A et al (2009) Longitudinal effect of vigorous physical activity on patella cartilage morphology in people without clinical knee disease. Arthritis Rheum 61:1095–1102CrossRefPubMedGoogle Scholar
  53. 53.
    Stehling C, Liebl H, Krug R et al (2010) Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology 254:509–520CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Stahl R, Luke A, Li X et al (2009) T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—A 3.0-Tesla MRI study. Eur Radiol 19:132–143CrossRefPubMedGoogle Scholar
  55. 55.
    Washburn RA, Smith KW, Jette AM, Janney CA (1993) The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 46:153–162CrossRefPubMedGoogle Scholar
  56. 56.
    McPhee JS, Hogrel JY, Maier AB et al (2013) Physiological and functional evaluation of healthy young and older men and women: design of the European MyoAge study. Biogerontology 14:325–337CrossRefPubMedGoogle Scholar
  57. 57.
    Amin S, Goggins J, Niu J et al (2008) Occupation-related squatting, kneeling, and heavy lifting and the knee joint: a magnetic resonance imaging-based study in men. J Rheumatol 35:1645–1649PubMedCentralPubMedGoogle Scholar
  58. 58.
    Teichtahl AJ, Wluka AE, Wang Y et al (2010) Occupational activity is associated with knee cartilage morphology in females. Maturitas 66:72–76CrossRefPubMedGoogle Scholar
  59. 59.
    Finkelstein EA, Khavjou OA, Thompson H et al (2012) Obesity and severe obesity forecasts through 2030. Am J Prev Med 42:563–570CrossRefPubMedGoogle Scholar
  60. 60.
    Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26:355–369CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ (1999) Body mass index in young men and the risk of subsequent knee and hip osteoarthritis. Am J Med 107:542–548CrossRefPubMedGoogle Scholar
  62. 62.
    Sowers MR, Karvonen-Gutierrez CA (2010) The evolving role of obesity in knee osteoarthritis. Curr Opin Rheumatol 22:533–537CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Dumond H, Presle N, Terlain B et al (2003) Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 48:3118–3129CrossRefPubMedGoogle Scholar
  64. 64.
    Baum T, Joseph GB, Nardo L et al (2013) Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res (Hoboken) 65:23–33CrossRefGoogle Scholar
  65. 65.
    Anandacoomarasamy A, Smith G, Leibman S et al (2009) Cartilage defects are associated with physical disability in obese adults. Rheumatology 48:1290–1293CrossRefPubMedGoogle Scholar
  66. 66.
    Gudbergsen H, Boesen M, Lohmander LS et al (2012) Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthr Cartil 20:495–502CrossRefPubMedGoogle Scholar
  67. 67.
    Henriksen M, Hunter DJ, Dam EB et al (2013) Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial. Osteoarthr Cartil 21:1865–1875CrossRefPubMedGoogle Scholar
  68. 68.
    Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32CrossRefPubMedGoogle Scholar
  69. 69.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13:456–460CrossRefPubMedGoogle Scholar
  70. 70.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152CrossRefPubMedGoogle Scholar
  71. 71.
    Maletius W, Messner K (1999) Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 27:711–717PubMedGoogle Scholar
  72. 72.
    Amin S, Guermazi A, Lavalley MP et al (2008) Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthr Cartil 16:897–902CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36:1717–1725CrossRefPubMedGoogle Scholar
  74. 74.
    Crema MD, Marra MD, Guermazi A, Bohndorf K, Roemer FW (2009) Relevant traumatic injury of the knee joint-MRI follow-up after 7–10 years. Eur J Radiol 72:473–479CrossRefPubMedGoogle Scholar
  75. 75.
    Guermazi A, Hayashi D, Jarraya M et al (2013) Medial posterior meniscal root tears are associated with development or worsening of medial tibiofemoral cartilage damage: the multicenter osteoarthritis study. Radiology 268:814–821CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Lee D-H, Lee B-S, Kim J-M et al (2011) Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19:222–229CrossRefPubMedGoogle Scholar
  77. 77.
    Lee YG, Shim JC, Choi YS, Kim JG, Lee GJ, Kim HK (2008) Magnetic resonance imaging findings of surgically proven medial meniscus root tear: tear configuration and associated knee abnormalities. J Comput Assist Tomogr 32:452–457CrossRefPubMedGoogle Scholar
  78. 78.
    Crema MD, Roemer FW, Felson DT et al (2012) Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology 264:494–503CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Bloecker K, Guermazi A, Wirth W et al (2013) Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing - data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:419–427CrossRefPubMedGoogle Scholar
  80. 80.
    Vollnberg B, Koehlitz T, Jung T et al (2012) Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 22:2347–2356CrossRefPubMedGoogle Scholar
  81. 81.
    McAlindon TE, Cooper C, Kirwan JR, Dieppe PA (1993) Determinants of disability in osteoarthritis of the knee. Ann Rheum Dis 52:258–262CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Knoop J, van der Leeden M, van der Esch M et al (2012) Association of lower muscle strength with self-reported knee instability in osteoarthritis of the knee: results from the Amsterdam Osteoarthritis cohort. Arthritis Care Res (Hoboken) 64:38–45CrossRefGoogle Scholar
  83. 83.
    Amin S, Baker K, Niu J et al (2009) Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 60:189–198CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Stefanik JJ, Guermazi A, Zhu Y et al (2011) Quadriceps weakness, patella alta, and structural features of patellofemoral osteoarthritis. Arthritis Care Res (Hoboken) 63:1391–1397CrossRefGoogle Scholar
  85. 85.
    Dannhauer T, Sattler M, Wirth W, Hunter DJ, Kwoh CK, Eckstein F (2013) Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative. MAGMA. doi: 10.1007/s10334-013-0418-z PubMedGoogle Scholar
  86. 86.
    Hart HF, Ackland DC, Pandy MG, Crossley KM (2012) Quadriceps volumes are reduced in people with patellofemoral joint osteoarthritis. Osteoarthr Cartil 20:863–868CrossRefPubMedGoogle Scholar
  87. 87.
    Pan J, Stehling C, Muller-Hocker C et al (2011) Vastus lateralis/vastus medialis cross-sectional area ratio impacts presence and degree of knee joint abnormalities and cartilage T2 determined with 3T MRI - an analysis from the incidence cohort of the Osteoarthritis Initiative. Osteoarthr Cartil 19:65–73CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119CrossRefPubMedGoogle Scholar
  89. 89.
    Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM (2009) Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 61:459–467CrossRefPubMedGoogle Scholar
  90. 90.
    Hunter DJ, Niu J, Felson DT et al (2007) Knee alignment does not predict incident osteoarthritis: the Framingham osteoarthritis study. Arthritis Rheum 56:1212–1218CrossRefPubMedGoogle Scholar
  91. 91.
    Zhai G, Ding C, Cicuttini F, Jones G (2007) A longitudinal study of the association between knee alignment and change in cartilage volume and chondral defects in a largely non-osteoarthritic population. J Rheumatol 34:181–186PubMedGoogle Scholar
  92. 92.
    Felson DT, Niu J, Gross KD et al (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 65:355–362CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Janakiramanan N, Teichtahl AJ, Wluka AE et al (2008) Static knee alignment is associated with the risk of unicompartmental knee cartilage defects. J Orthop Res 26:225–230CrossRefPubMedGoogle Scholar
  94. 94.
    Issa SN, Dunlop D, Chang A et al (2007) Full-limb and knee radiography assessments of varus-valgus alignment and their relationship to osteoarthritis disease features by magnetic resonance imaging. Arthritis Rheum 57:398–406CrossRefPubMedGoogle Scholar
  95. 95.
    Sharma L, Chmiel JS, Almagor O et al (2013) The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 72:235–240CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Hamza Alizai
    • 1
    • 2
    • 3
  • Frank W. Roemer
    • 1
    • 2
    • 4
  • Daichi Hayashi
    • 1
    • 2
    • 5
  • Michel D. Crema
    • 1
    • 2
    • 6
  • David T. Felson
    • 7
  • Ali Guermazi
    • 1
    • 2
    • 8
    Email author
  1. 1.Quantitative Imaging Center, Department of RadiologyBoston University School of MedicineBostonUSA
  2. 2.Aspetar Orthopaedic and Sports Medicine HospitalDohaQatar
  3. 3.Department of RadiologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  4. 4.Department of RadiologyUniversity of Erlangen-NurembergErlangenGermany
  5. 5.Department of Radiology, Bridgeport HospitalYale University School of MedicineBridgeportUSA
  6. 6.Department of RadiologyHospital do Coração and TeleimagemSão PauloBrazil
  7. 7.Clinical Epidemiology Research and Training UnitBoston University School of MedicineBostonUSA
  8. 8.Boston Medical CenterBostonUSA

Personalised recommendations