European Radiology

, Volume 25, Issue 2, pp 488–496 | Cite as

Detection and quantification of the solid component in pulmonary subsolid nodules by semiautomatic segmentation

  • Ernst Th. Scholten
  • Colin Jacobs
  • Bram van Ginneken
  • Sarah van Riel
  • Rozemarijn Vliegenthart
  • Matthijs Oudkerk
  • Harry J. de Koning
  • Nanda Horeweg
  • Mathias Prokop
  • Hester A. Gietema
  • Willem P. Th.M. Mali
  • Pim A. de Jong
Computed Tomography



To determine whether semiautomatic volumetric software can differentiate part-solid from nonsolid pulmonary nodules and aid quantification of the solid component.


As per reference standard, 115 nodules were differentiated into nonsolid and part-solid by two radiologists; disagreements were adjudicated by a third radiologist. The diameters of solid components were measured manually. Semiautomatic volumetric measurements were used to identify and quantify a possible solid component, using different Hounsfield unit (HU) thresholds. The measurements were compared with the reference standard and manual measurements.


The reference standard detected a solid component in 86 nodules. Diagnosis of a solid component by semiautomatic software depended on the threshold chosen. A threshold of −300 HU resulted in the detection of a solid component in 75 nodules with good sensitivity (90 %) and specificity (88 %). At a threshold of −130 HU, semiautomatic measurements of the diameter of the solid component (mean 2.4 mm, SD 2.7 mm) were comparable to manual measurements at the mediastinal window setting (mean 2.3 mm, SD 2.5 mm [p = 0.63]).


Semiautomatic segmentation of subsolid nodules could diagnose part-solid nodules and quantify the solid component similar to human observers. Performance depends on the attenuation segmentation thresholds. This method may prove useful in managing subsolid nodules.

Key Points

Semiautomatic segmentation can accurately differentiate nonsolid from part-solid pulmonary nodules

Semiautomatic segmentation can quantify the solid component similar to manual measurements

Semiautomatic segmentation may aid management of subsolid nodules following Fleischner Society recommendations

Performance for the segmentation of subsolid nodules depends on the chosen attenuation thresholds


Subsolid pulmonary nodules Computer-aided diagnosis Computed tomography Lung cancer Screening 


  1. 1.
    Henschke CI, Yankelevitz DF, Mirtcheva R, McGuinness G, McCauley D, Miettinen OS (2002) CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. AJR Am J Roentgenol 178:1053–1057PubMedCrossRefGoogle Scholar
  2. 2.
    Sone S, Nakayama T, Honda T et al (2007) Long-term follow-up study of a population-based 1996-1998 mass screening programme for lung cancer using mobile low-dose spiral computed tomography. Lung Cancer 58:329–341PubMedCrossRefGoogle Scholar
  3. 3.
    Revel MP, Lefort C, Bissery A et al (2004) Pulmonary nodules: preliminary experience with three-dimensional evaluation. Radiology 231:459–466PubMedCrossRefGoogle Scholar
  4. 4.
    Revel MP, Bissery A, Bienvenu M, Aycard L, Lefort C, Frija G (2004) Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable. Radiology 231:453–458PubMedCrossRefGoogle Scholar
  5. 5.
    Marten K, Auer F, Schmidt S, Kohl G, Rummeny EJ, Engelke C (2006) Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria. Eur Radiol 16:781–790PubMedCrossRefGoogle Scholar
  6. 6.
    de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M (2010) Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 255:199–206PubMedCrossRefGoogle Scholar
  7. 7.
    Naidich DP, Bankier AA, MacMahon H et al (2013) Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 266:304–317PubMedCrossRefGoogle Scholar
  8. 8.
    Aoki T, Tomoda Y, Watanabe H et al (2001) Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology 220:803PubMedCrossRefGoogle Scholar
  9. 9.
    Kim EA, Johkoh T, Lee KS et al (2001) Quantification of ground-glass opacity on high-resolution CT of small peripheral adenocarcinoma of the lung: pathologic and prognostic implications. AJR Am J Roentgenol 177:1417–1422PubMedCrossRefGoogle Scholar
  10. 10.
    Ohde Y, Nagai K, Yoshida J et al (2003) The proportion of consolidation to ground-glass opacity on high resolution CT is a good predictor for distinguishing the population of non-invasive peripheral adenocarcinoma. Lung Cancer 42:303–310PubMedCrossRefGoogle Scholar
  11. 11.
    Takamochi K, Nagai K, Yoshida J et al (2001) Pathologic N0 status in pulmonary adenocarcinoma is predictable by combining serum carcinoembryonic antigen level and computed tomographic findings. J Thorac Cardiovasc Surg 122:325–330PubMedCrossRefGoogle Scholar
  12. 12.
    Okada M, Nishio W, Sakamoto T, Uchino K, Tsubota N (2003) Discrepancy of computed tomographic image between lung and mediastinal windows as a prognostic implication in small lung adenocarcinoma. Ann Thorac Surg 76:1828–1832PubMedCrossRefGoogle Scholar
  13. 13.
    Yanagawa M, Tanaka Y, Kusumoto M et al (2010) Automated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: correlation with pathologic prognostic factors. Lung Cancer 70:286–294PubMedCrossRefGoogle Scholar
  14. 14.
    Sumikawa H, Johkoh T, Nagareda T et al (2008) Pulmonary adenocarcinomas with ground-glass attenuation on thin-section CT: quantification by three-dimensional image analyzing method. Eur J Radiol 65:104–111PubMedCrossRefGoogle Scholar
  15. 15.
    Kakinuma R, Kodama K, Yamada K et al (2008) Performance evaluation of 4 measuring methods of ground-glass opacities for predicting the 5-year relapse-free survival of patients with peripheral nonsmall cell lung cancer: a multicenter study. J Comput Assist Tomogr 32:792–798PubMedCrossRefGoogle Scholar
  16. 16.
    Scholten ET, Jacobs C, van Ginneken B et al (2013) Computer aided segmentation and volumetry of artificial ground glass nodules on chest computed tomography. AJR Am J Roentgenol 201:295–300PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhnigk JM, Dicken V, Bornemann L et al (2006) Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging 25:417–434PubMedCrossRefGoogle Scholar
  18. 18.
    van Klaveren RJ, Oudkerk M, Prokop M et al (2009) Management of lung nodules detected by volume CT scanning. N Engl J Med 361:2221–2229PubMedCrossRefGoogle Scholar
  19. 19.
    Bhure UN, Lardinois D, Kalff V et al (2010) Accuracy of CT parameters for assessment of tumour size and aggressiveness in lung adenocarcinoma with bronchoalveolar elements. Br J Radiol 83:841–849PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Nakata M, Sawada S, Yamashita M et al (2005) Objective radiologic analysis of groundglass opacity aimed at curative limited resection for small peripheral non–small cell lung cancer. J Thorac Cardiovasc Surg 129:1226–1231PubMedCrossRefGoogle Scholar
  21. 21.
    Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H (2007) Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest 132:984–990PubMedCrossRefGoogle Scholar
  22. 22.
    Yanagawa M, Kuriyama K, Kunitomi Y et al (2009) One-dimensional quantitative evaluation of peripheral lung adenocarcinoma with or without ground-glass opacity on thin-section CT images using profile curves. Br J Radiol 82:532–540PubMedCrossRefGoogle Scholar
  23. 23.
    Kitami A, Kamio Y, Hayashi S et al (2012) One-dimensional mean computed tomography value evaluation of ground-glass opacity on high-resolution images. Gen Thorac Cardiovasc Surg 60:425–430PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Maldonado F, Boland JM, Raghunath S (2013) Noninvasive characterization of the histopathologic features of pulmonary nodules of the lung adenocarcinoma spectrum using computer-aided nodule assessment and risk yield (CANARY)–a pilot study. J Thorac Oncol 8:452–460PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Ernst Th. Scholten
    • 1
    • 2
  • Colin Jacobs
    • 3
  • Bram van Ginneken
    • 3
    • 4
  • Sarah van Riel
    • 3
  • Rozemarijn Vliegenthart
    • 5
    • 6
  • Matthijs Oudkerk
    • 6
  • Harry J. de Koning
    • 7
  • Nanda Horeweg
    • 7
    • 8
  • Mathias Prokop
    • 9
  • Hester A. Gietema
    • 1
  • Willem P. Th.M. Mali
    • 1
  • Pim A. de Jong
    • 1
  1. 1.Department of RadiologyUniversity Medical CenterUtrechtThe Netherlands
  2. 2.Department of RadiologyKennemer GasthuisHaarlemThe Netherlands
  3. 3.Diagnostic Image Analysis GroupRadboud University Medical CenterNijmegenThe Netherlands
  4. 4.Fraunhofer MEVISBremenGermany
  5. 5.Department of RadiologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  6. 6.Center for Medical Imaging-North East NetherlandsUniversity of Groningen, University Medical Centre GroningenGroningenThe Netherlands
  7. 7.Department of Public HealthErasmus Medical CenterRotterdamThe Netherlands
  8. 8.Department of PulmonologyErasmus Medical CenterRotterdamThe Netherlands
  9. 9.Department of RadiologyRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations