European Radiology

, Volume 24, Issue 12, pp 3123–3133 | Cite as

Normal hepatic parenchyma visibility and ADC quantification on diffusion-weighted MRI at 3 T: influence of age, gender, and iron content

  • Thierry MetensEmail author
  • Kellen Fanstone Ferraresi
  • Alessandra Farchione
  • Christophe Moreno
  • Maria Antonietta Bali
  • Celso Matos



To investigate how normal liver parenchyma visibility on 3 T diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) quantification are influenced by age, gender, and iron content.


Between February 2011 and April 2013, 86 patients (52 women) with normal livers who underwent respiratory-triggered abdominal 3 T DWI (b = 0, 150, 600, 1,000 s/mm2) were retrospectively included. Normal liver and spleen parenchyma visibility was scored independently by two readers. Correlations between visibility scores or ADC with age, gender, T2*, or recent serum ferritin (SF) were investigated.


Liver visibility scores in b = 1,000 s/mm2 images correlated with the age (Spearman R = -0.56 in women, -0.45 in men), T2* (R = 0.75) and SF (R = -0.64) and were significantly higher in women (P < 0.01). SF and T2* were within normal values (T2*: 13 – 31 ms, SF: 14 – 230 μg/L). Liver ADC correlated with visibility scores (R = 0.69) and T2* (R = 0.64) and was age- and gender-dependent. ADC ROI standard deviation negatively correlated with visibility scores (R = -0.65) and T2* (R = -0.62). The spleen visibility did not depend on age or gender.


Normal liver parenchyma visibility in DWI is age- and gender-dependent, according to the iron content. Visibility scores and iron content significantly affect ADC quantification in the normal liver.

Key Points

Normal DWI liver visibility is gender-dependent and superior in women.

In women, normal DWI liver visibility is superior before age 50 years

Normal DWI liver visibility negatively correlates with normal range iron content markers

Liver ADC quantification depends on liver iron content even within normal range.

Normal liver T2* is age- and gender-dependent.


Diffusion-weighted MRI Liver Apparent diffusion coefficient ADC Iron content T2* relaxation time 



The scientific guarantor of this publication is Dr. Celso Matos. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. One of the authors has significant statistical expertise. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was waived by the institutional review board. Methodology: retrospective, observational, performed at one institution.


  1. 1.
    Koh D-M, Collins D (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 188:1622–1635CrossRefGoogle Scholar
  2. 2.
    Taouli B, Koh D-M (2010) Diffusion-weighted MR imaging of the liver. Radiology 264:47–66CrossRefGoogle Scholar
  3. 3.
    Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, Taouli B (2010) Diagnosis of liver fibrosis and cirrhosis with diffusion-weighted imaging: value of normalized apparent diffusion coefficient using the spleen as reference organ. Am J Roentgenol 195(3):671–676CrossRefGoogle Scholar
  4. 4.
    Bakan AA, Inci E, Bakan S, Gokturk S, Cimilli T (2012) Utility of diffusion-weighted imaging in the evaluation of liver fibrosis. Eur Radiol 22(3):682–687PubMedCrossRefGoogle Scholar
  5. 5.
    Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249(3):891–899PubMedCrossRefGoogle Scholar
  6. 6.
    Kim JE, Kim SH, Lee SJ, Rhim H (2011) Hypervascular hepatocellular carcinoma 1 cm or smaller in patients with chronic liver disease: characterization with gadoxetic acid-enhanced MRI that includes diffusion-weighted imaging. Am J Roentgenol 196(6):W758–W765CrossRefGoogle Scholar
  7. 7.
    Schwenzer NF, Machann J, Haap MM, Martirosian P, Schraml C, Lie-big G, Stefan N, Haring HU, Claussen CD, Fritsche A, Schick F (2008) T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 43:854–860PubMedCrossRefGoogle Scholar
  8. 8.
    Worwood M (2012) Estimation of body iron stores. In: Anderson GJ, McLaren GD (eds) Iron physiology and pathophysiology in humans (Nutrition and Health). Springer, Berlin, pp 503–505Google Scholar
  9. 9.
    Alústiza JM, Artetxe J, Castiella A, Agirre C, Emparanza JI, Otazua P, García-Bengoechea M, Barrio J, Mújica F, Recondo JA, Gipuzkoa (2004) Hepatic iron concentration by MRI Study Group. MR quantification of hepatic iron concentration. Radiology 230(2):479–484PubMedCrossRefGoogle Scholar
  10. 10.
    Wood JC, Enriquez C, Ghugre N et al (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion- dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gandon Y, Olivie D, Guyader D, Aube C, Oberti F, Sebille V, Deugnier Y (2004) Non-invasive assessment of hepatic iron stores by MRI. Lancet 363:357–362PubMedCrossRefGoogle Scholar
  12. 12.
    Milman N, Rosdahl N, Lyhne N et al (1993) Iron status in Danish women aged 35–65 years. Relation to menstruation and method of contraception. Acta Obstet Gynecol Scand 72:601–605PubMedCrossRefGoogle Scholar
  13. 13.
    Milman N (1996) Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol 63(2):103–135PubMedCrossRefGoogle Scholar
  14. 14.
    Bergström E, Hernell O, Lönnerdal B, Persson LA (1995) Sex differences in iron stores of adolescents: what is normal? J Pediatr Gastroenterol Nutr 20(2):215–224PubMedCrossRefGoogle Scholar
  15. 15.
    Fleming DJ, Jacques PF, Tucker KL et al (2001) Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores. Am J Clin Nutr 73:638–646PubMedGoogle Scholar
  16. 16.
    Wang JL, Shaw NS (2005) Iron status of the Taiwanese elderly: the prevalence of iron deficiency and elevated iron stores. Asia Pac J Clin Nutr 14:278–284PubMedGoogle Scholar
  17. 17.
    Clancy KB, Nenko I, Jasienska G (2006) Menstruation does not cause anemia: endometrial thickness correlates positively with erythrocyte count and hemoglobin concentration in premenopausal women. Am J Hum Biol 18(5):710–713PubMedCrossRefGoogle Scholar
  18. 18.
    Gautier A, Lainé F, Massart C, Sandret L, Piguel X, Brissot P, Balkau B, Deugnier Y, Bonnet F (2011) Liver iron overload is associated with elevated SHBG concentration and moderate hypogonadotrophic hypogonadism in dysmetabolic men without genetic haemochromatosis. Eur J Endocrinol 165(2):339–343PubMedCrossRefGoogle Scholar
  19. 19.
    Kim YK, Lee WJ, Park MJ, Kim SH, Rhim H, Choi D (2012) Hypovascular hypointense nodules on hepatobiliary phase gadoxetic acid-enhanced MR images in patients with cirrhosis: potential of DW imaging in predicting progression to hypervascular HCC. Radiology 265(1):104–114PubMedCrossRefGoogle Scholar
  20. 20.
    Park MJ, Kim YK, Lee MW, Lee WJ, Kim YS, Kim SH, Choi D, Rhim H (2012) Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 264(3):761–770PubMedCrossRefGoogle Scholar
  21. 21.
    Chenevert T (2010) Principles of diffusion-weighted imaging (DW-MRI) as applied to body imaging. In: Koh D-M, Thoeny HC (eds) Diffusion-weighted MR imaging (Medical Radiology). Springer, Berlin, pp 3–17CrossRefGoogle Scholar
  22. 22.
    Dietrich O, Heiland S, Sartor K (2001) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448–453PubMedCrossRefGoogle Scholar
  23. 23.
    Chandarana H, Do R, Mussi T, Jensen J, Hajdu C, Babb J, Taouli B (2012) The effect of liver iron deposition on hepatic apparent diffusion coefficient values in cirrhosis. Am J Roentgenol 199:803–808CrossRefGoogle Scholar
  24. 24.
    Bulow R, Mensel B, Meffert P, Hernando D, Matthias E, Kuhn JP (2013) Diffusion-weighted magnetic resonance imaging for staging liver fibrosis is less reliable in the presence of fat and iron. Eur Radiol 23:1281–1287PubMedCrossRefGoogle Scholar
  25. 25.
    Bonekamp S, Torbenson MS, Kamel IR (2011) Diffusion-weighted magnetic resonance imaging for the staging of liver fibrosis. J Clin Gastroenterol 45(10):885–892PubMedCrossRefGoogle Scholar
  26. 26.
    Guiu B, Petit JM, Capitan V, Aho S, Masson D, Lefevre PH, Favelier S, Loffroy R, Vergès B, Hillon P, Krausé D, Cercueil JP (2012) Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study. Radiology 265(1):96–103PubMedCrossRefGoogle Scholar
  27. 27.
    Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31(3):589–600PubMedCrossRefGoogle Scholar
  28. 28.
    Kwee TC, Takahara T, Niwa T, Ivancevic MK, Herigault G, Van Cauteren M, Luijten PR (2009) Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. MAGMA 22(5):319–325PubMedCrossRefGoogle Scholar
  29. 29.
    Pasquinelli F, Belli G, Mazzoni LN, Grazioli L, Colagrande S (2011) Magnetic resonance diffusion-weighted imaging: quantitative evaluation of age-related changes in healthy liver parenchyma. Magn Reson Imaging 29(6):805–812PubMedCrossRefGoogle Scholar
  30. 30.
    Storey P, Thompson A, Carqueville C, de Wood J, Freitas A, Rigsby C (2007) R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging 25:540–547PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Thierry Metens
    • 1
    • 3
    Email author
  • Kellen Fanstone Ferraresi
    • 1
  • Alessandra Farchione
    • 1
  • Christophe Moreno
    • 2
  • Maria Antonietta Bali
    • 1
  • Celso Matos
    • 1
  1. 1.Department of Radiology, Hôpital ErasmeMRI ClinicsBruxellesBelgium
  2. 2.Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, Hopital ErasmeUniversité Libre de BruxellesBruxellesBelgium
  3. 3.Magnetic Resonance Imaging Clinics, Department of Radiology, Hôpital ErasmeUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations