European Radiology

, Volume 24, Issue 12, pp 3217–3223 | Cite as

Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study

  • Jean-François BudzikEmail author
  • Guillaume Lefebvre
  • Gerard Forzy
  • Mazen El Rafei
  • David Chechin
  • Anne Cotten



The objective of this study was to compare measurements of semi-quantitative and pharmacokinetic parameters in areas of red (RBM) and yellow bone marrow (YBM) of the hip, using an in-house high-resolution DCE T1 sequence, and to assess intra- and inter-observer reproducibility of these measurements.


The right hips of 21 adult patients under 50 years of age were studied. Spatial resolution was 1.8 × 1.8 × 1.8 mm3, and temporal resolution was 13.5 seconds. Two musculoskeletal radiologists independently processed DCE images and measured semi-quantitative and pharmacokinetic parameters in areas of YBM and RBM. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Intra- and inter-observer reproducibility was assessed.


Area under the curve (AUC) and initial slope (IS) were significantly greater for RBM than for YBM (p < 0.05). Ktrans and kep were also significantly greater for RBM (p < 0.05). There was no significant difference in time to peak between the regions (p < 0.05). SNR, CNR, and intra- and inter-observer reproducibility were all good.


DCE study of the whole hip is feasible with high spatial resolution using a 3D T1 sequence. Measures were possible even in low vascularized areas of the femoral head. Ktrans, kep, AUC, and IS values were significantly different between red and yellow marrow, whereas TTP values were not.

Key Points

• High-spatial-resolution dynamic contrast-enhanced MRI of hip structures is feasible.

• Intra- and inter-observer reproducibility is good.

• Red and yellow bone marrow have different perfusion patterns.


Magnetic resonance imaging Perfusion Bone marrow Femur 3D sequence 



Yellow bone marrow


Red bone marrow


Field of view


Multiplanar reconstruction


Region of interest


Dynamic contrast-enhanced


Variable flip angle


Area under the curve


Initial Slope




Magnetic resonance imaging


Signal-to-noise ratio


Contrast-to-noise ratio


2-fluoro-deoxy-glucose positron emission tomography



The authors wish to thank Dr. Mustapha Azahaf for his kindness and invaluable advice on DCE. The scientific guarantor of this publication is Professor Anne Cotten. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. Mr. David Chechin, PhD, who is one of the co-authors, works for Philips Healthcare, and provided technical expertise during the implementation of the sequence.

The authors state that this work has not received any funding. One of the authors has significant statistical expertise. No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because the only patient constraint was a slightly longer MRI protocol. No injection was made solely for purposes of the study. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective observational study, performed at one institution.


  1. 1.
    Dyke JP, Aaron RK (2010) Noninvasive methods of measuring bone blood perfusion. Ann N Y Acad Sci 1192:95–102PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    De Coninck T, Jans L, Sys G, Huysse W, Verstraeten T, Forsyth R et al (2013) Dynamic contrast-enhanced MR imaging for differentiation between enchondroma and chondrosarcoma. Eur Radiol 23:3140–3152PubMedCrossRefGoogle Scholar
  3. 3.
    Lecouvet FE, Larbi A, Pasoglou V, Omoumi P, Tombal B, Michoux N et al (2013) MRI for response assessment in metastatic bone disease. Eur Radiol 23:1986–1997PubMedCrossRefGoogle Scholar
  4. 4.
    Courcoutsakis N, Spanoudaki A, Maris TG, Astrinakis E, Spanoudakis E, Tsatalas C et al (2012) Perfusion parameters analysis of the vertebral bone marrow in patients with Ph1− chronic myeloproliferative neoplasms (Ph(neg) MPN): a dynamic contrast-enhanced MRI (DCE-MRI) study. J Magn Reson Imaging JMRI 35:696–702CrossRefGoogle Scholar
  5. 5.
    Shih TT-F, Hou H-A, Liu C-Y, Chen B-B, Tang J-L, Chen H-Y et al (2009) Bone marrow angiogenesis magnetic resonance imaging in patients with acute myeloid leukemia: peak enhancement ratio is an independent predictor for overall survival. Blood 113:3161–3167PubMedCrossRefGoogle Scholar
  6. 6.
    Eichten A, Adler AP, Cooper B, Griffith J, Wei Y, Yancopoulos GD et al (2013) Rapid decrease in tumor perfusion following VEGF blockade predicts long-term tumor growth inhibition in preclinical tumor models. Angiogenesis 16:429–441PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Boesen M, Kubassova O, Bouert R, Axelsen MB, Østergaard M, Cimmino MA et al (2012) Correlation between computer-aided dynamic gadolinium-enhanced MRI assessment of inflammation and semi-quantitative synovitis and bone marrow oedema scores of the wrist in patients with rheumatoid arthritis—a cohort study. Rheumatology 51:134–143PubMedCrossRefGoogle Scholar
  8. 8.
    Cimmino MA, Barbieri F, Boesen M, Paparo F, Parodi M, Kubassova O et al (2012) Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol Suppl 89:44–48PubMedCrossRefGoogle Scholar
  9. 9.
    Griffith JF, Yeung DKW, Leung JCS, Kwok TCY, Leung PC (2011) Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol 21:1160–1169PubMedCrossRefGoogle Scholar
  10. 10.
    Savvopoulou V, Maris TG, Koureas A, Gouliamos A, Moulopoulos LA (2011) Degenerative endplate changes of the lumbosacral spine: dynamic contrast-enhanced MRI profiles related to age, sex, and spinal level. J Magn Reson Imaging JMRI 33:382–389CrossRefGoogle Scholar
  11. 11.
    Aaron RK, Dyke JP, Ciombor DM, Ballon D, Lee J, Jung E et al (2007) Perfusion abnormalities in subchondral bone associated with marrow edema, osteoarthritis, and avascular necrosis. Ann N Y Acad Sci 1117:124–137PubMedCrossRefGoogle Scholar
  12. 12.
    Chan WP, Liu Y-J, Huang G-S, Lin M-F, Huang S, Chang Y-C et al (2011) Relationship of idiopathic osteonecrosis of the femoral head to perfusion changes in the proximal femur by dynamic contrast-enhanced MRI. AJR Am J Roentgenol 196:637–643PubMedCrossRefGoogle Scholar
  13. 13.
    Libicher M, Kasperk C, Daniels-Wredenhagen M, Heye T, Kauczor HU, Nawroth P et al (2013) Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget’s disease of bone. Skelet Radiol 42:225–230CrossRefGoogle Scholar
  14. 14.
    Savvopoulou V, Maris TG, Vlahos L, Moulopoulos LA (2008) Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI). Eur Radiol 18:1876–1883PubMedCrossRefGoogle Scholar
  15. 15.
    Chen WT, Shih TT, Chen RC, Lo SY, Chou CT, Lee JM et al (2001) Vertebral bone marrow perfusion evaluated with dynamic contrast-enhanced MR imaging: significance of aging and sex. Radiology 220:213–218PubMedCrossRefGoogle Scholar
  16. 16.
    Rastogi A, Kubassova O, Krasnosselskaia LV, Lim AKP, Satchithananda K, Boesen M et al (2013) Evaluating automated dynamic contrast enhanced wrist 3 T MRI in healthy volunteers: one-year longitudinal observational study. Eur J Radiol 82:1286–1291PubMedCrossRefGoogle Scholar
  17. 17.
    Müller GM, Månsson S, Müller MF, Ekberg O, Björkman A (2013) Assessment of perfusion in normal carpal bones with dynamic gadolinium-enhanced MRI at 3 Tesla. J Magn Reson Imaging JMRI 38:168–172CrossRefGoogle Scholar
  18. 18.
    Breault SR, Heye T, Bashir MR, Dale BM, Merkle EM, Reiner CS et al (2013) Quantitative dynamic contrast-enhanced MRI of pelvic and lumbar bone marrow: effect of age and marrow fat content on pharmacokinetic parameter values. AJR Am J Roentgenol 200:W297–W303PubMedCrossRefGoogle Scholar
  19. 19.
    Bijlsma JWJ, Berenbaum F, Lafeber FPJG (2011) Osteoarthritis: an update with relevance for clinical practice. Lancet 377:2115–2126PubMedCrossRefGoogle Scholar
  20. 20.
    Karantanas AH, Drakonaki EE (2011) The role of MR imaging in avascular necrosis of the femoral head. Semin Musculoskelet Radiol 15:281–300PubMedCrossRefGoogle Scholar
  21. 21.
    Thomassin-Naggara I, Balvay D, Cuenod CA, Daraï E, Marsault C, Bazot M (2010) Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion. Eur Radiol 20:984–994PubMedCrossRefGoogle Scholar
  22. 22.
    Kim EY, Kwack K-S, Cho JH, Lee D-H, Yoon S-H (2012) Usefulness of dynamic contrast-enhanced MRI in differentiating between septic arthritis and transient synovitis in the hip joint. AJR Am J Roentgenol 198:428–433PubMedCrossRefGoogle Scholar
  23. 23.
    Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Guillerman RP (2013) Marrow: red, yellow and bad. Pediatr Radiol 43:S181–S192PubMedCrossRefGoogle Scholar
  25. 25.
    Wang Y-XJ, Griffith JF, Kwok AWL, Leung JCS, Yeung DKW, Ahuja AT et al (2009) Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone 45:711–715PubMedCrossRefGoogle Scholar
  26. 26.
    Li X, Huang W, Rooney WD (2012) Signal-to-noise ratio, contrast-to-noise ratio and pharmacokinetic modeling considerations in dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 30:1313–1322PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging JMRI 26:375–385CrossRefGoogle Scholar
  28. 28.
    Padhani AR, Hayes C, Landau S, Leach MO (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153PubMedCrossRefGoogle Scholar
  29. 29.
    Lee JH, Dyke JP, Ballon D, Ciombor DM, Tung G, Aaron RK (2009) Assessment of bone perfusion with contrast-enhanced magnetic resonance imaging. Orthop Clin North Am 40:249–257PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Malattia C, Damasio MB, Basso C, Verri A, Magnaguagno F, Viola S et al (2010) Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatol Oxf Engl 49:178–185CrossRefGoogle Scholar
  31. 31.
    DCE-MRI Technical Committee. DCE-MRI Quantification Profile, Quantitative Imaging Biomarkers Alliance. Version 1.0. Reviewed Draft. [Internet] 2012. Available at:
  32. 32.
    Leach MO, Morgan B, Tofts PS, Buckley DL, Huang W, Horsfield MA et al (2012) Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22:1451–1464PubMedCrossRefGoogle Scholar
  33. 33.
    Dwek JR, Shapiro F, Laor T, Barnewolt CE, Jaramillo D (1997) Normal gadolinium-enhanced MR images of the developing appendicular skeleton: part 2. Epiphyseal and metaphyseal marrow. AJR Am J Roentgenol 169:191–196PubMedCrossRefGoogle Scholar
  34. 34.
    Blebea JS, Houseni M, Torigian DA, Fan C, Mavi A, Zhuge Y et al (2007) Structural and functional imaging of normal bone marrow and evaluation of its age-related changes. Semin Nucl Med 37:185–194PubMedCrossRefGoogle Scholar
  35. 35.
    Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D et al (2013) Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol 200:24–34PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Roberts C, Little R, Watson Y, Zhao S, Buckley DL, Parker GJM (2011) The effect of blood inflow and B(1)-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 65:108–119CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Jean-François Budzik
    • 1
    • 2
    • 3
    • 4
    • 5
    • 9
    Email author
  • Guillaume Lefebvre
    • 2
    • 4
    • 6
  • Gerard Forzy
    • 3
    • 4
    • 7
  • Mazen El Rafei
    • 2
    • 4
    • 6
  • David Chechin
    • 8
  • Anne Cotten
    • 2
    • 4
    • 5
    • 6
  1. 1.Service d’Imagerie MédicaleGroupe Hospitalier de l’Institut Catholique de Lille / Faculté Libre de MédecineLilleFrance
  2. 2.Service de Radiologie et Imagerie MusculosquelettiqueCentre de Consultation et d’Imagerie de l’Appareil Locomoteur, CHRU de LilleLilleFrance
  3. 3.Université Catholique de LilleLilleFrance
  4. 4.Université Nord de FranceLilleFrance
  5. 5.EA 4490 PMOI (Physiopathologie des Maladies Osseuses Inflammatoires) IFR 114 PRES Université Lille Nord de FranceLilleFrance
  6. 6.CHU LilleLilleFrance
  7. 7.Laboratoire de Biologie, Département de BiostatistiquesGroupe Hospitalier de l’Institut Catholique de LilleLilleFrance
  8. 8.Philips Medical SystemsSuresnesFrance
  9. 9.Service d’Imagerie MédicaleGroupe Hospitalier de l’Institut Catholique de Lille, Hôpital St Vincent de PaulLille CedexFrance

Personalised recommendations