European Radiology

, Volume 24, Issue 11, pp 2700–2708 | Cite as

Persistent pulmonary subsolid nodules: model-based iterative reconstruction for nodule classification and measurement variability on low-dose CT

  • Hyungjin Kim
  • Chang Min Park
  • Seong Ho Kim
  • Sang Min Lee
  • Sang Joon Park
  • Kyung Hee Lee
  • Jin Mo Goo
Chest

Abstract

Objectives

To compare the pulmonary subsolid nodule (SSN) classification agreement and measurement variability between filtered back projection (FBP) and model-based iterative reconstruction (MBIR).

Methods

Low-dose CTs were reconstructed using FBP and MBIR for 47 patients with 47 SSNs. Two readers independently classified SSNs into pure or part-solid ground-glass nodules, and measured the size of the whole nodule and solid portion twice on both reconstruction algorithms. Nodule classification agreement was analyzed using Cohen’s kappa and compared between reconstruction algorithms using McNemar’s test. Measurement variability was investigated using Bland–Altman analysis and compared with the paired t-test.

Results

Cohen’s kappa for inter-reader SSN classification agreement was 0.541–0.662 on FBP and 0.778–0.866 on MBIR. Between the two readers, nodule classification was consistent in 79.8 % (75/94) with FBP and 91.5 % (86/94) with MBIR (p = 0.027). Inter-reader measurement variability range was -5.0–2.1 mm on FBP and -3.3–1.8 mm on MBIR for whole nodule size, and was -6.5–0.9 mm on FBP and -5.5–1.5 mm on MBIR for solid portion size. Inter-reader measurement differences were significantly smaller on MBIR (p = 0.027, whole nodule; p = 0.011, solid portion).

Conclusions

MBIR significantly improved SSN classification agreement and reduced measurement variability of both whole nodules and solid portions between readers.

Key Points

Low-dose CT using MBIR algorithm improves reproducibility in the classification of SSNs.

MBIR would enable more confident clinical planning according to the SSN type.

Reduced measurement variability on MBIR allows earlier detection of potentially malignant nodules.

Keywords

Lung neoplasms Multidetector computed tomography Computer-assisted image processing Iterative reconstruction Subsolid nodule 

Abbreviations

SSN

Subsolid nodule

IR

Iterative reconstruction

CT

Computed tomography

MBIR

Model-based iterative reconstruction

FBP

Filtered back projection

GGN

Ground-glass nodule

CTDIvol

Volume CT dose index

DLP

Dose-length product

SSDE

Size-specific dose estimate

ED

Effective dose

ICRP

International Commission on Radiological Protection

PACS

Picture archiving and communication system

HU

Hounsfield unit

CI

Confidence interval

References

  1. 1.
    Henschke CI, Yankelevitz DF, Mirtcheva R et al (2002) CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules. Am J Roentgenol 178:1053–1057CrossRefGoogle Scholar
  2. 2.
    Lee HJ, Lee CH, Jeong YJ et al (2012) IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma: novel concepts and radiologic implications. J Thorac Imaging 27:340–353PubMedCrossRefGoogle Scholar
  3. 3.
    Lee SM, Park CM, Goo JM, Lee HJ, Wi JY, Kang CH (2013) Invasive pulmonary adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: differentiation by using CT features. Radiology 268:265–273PubMedCrossRefGoogle Scholar
  4. 4.
    Kim H, Park CM, Koh JM, Lee SM, Goo JM (2014) Pulmonary subsolid nodules: what radiologists need to know about the imaging features and management strategy. Diagn Interv Radiol 20:47–57PubMedCrossRefGoogle Scholar
  5. 5.
    Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG (2007) Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics 27:391–408PubMedCrossRefGoogle Scholar
  6. 6.
    Naidich DP, Bankier AA, MacMahon H et al (2013) Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 266:304–317PubMedCrossRefGoogle Scholar
  7. 7.
    Willemink MJ, de Jong PA, Leiner T et al (2013) Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol 23:1623–1631PubMedCrossRefGoogle Scholar
  8. 8.
    Katsura M, Matsuda I, Akahane M et al (2013) Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction technique. Investig Radiol 48:206–212Google Scholar
  9. 9.
    Katsura M, Sato J, Akahane M et al (2013) Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: image quality assessment in the cervicothoracic region. Eur J Radiol 82:356–360PubMedCrossRefGoogle Scholar
  10. 10.
    American Association of Physicists in Medicine (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. Task Group 204. American Association of Physicists in Medicine, College ParkGoogle Scholar
  11. 11.
    Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166PubMedCrossRefGoogle Scholar
  12. 12.
    Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S (1989) Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 97:689–698PubMedCrossRefGoogle Scholar
  13. 13.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160PubMedCrossRefGoogle Scholar
  14. 14.
    National Lung Screening Trial Research Team, Aberle DR, Adams AM et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409PubMedCrossRefGoogle Scholar
  15. 15.
    Austin JH, Garg K, Aberle D et al (2013) Radiologic implications of the 2011 classification of adenocarcinoma of the lung. Radiology 266:62–71PubMedCrossRefGoogle Scholar
  16. 16.
    Chang W, Lee JM, Lee K et al (2013) Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Investig Radiol 48:598–606CrossRefGoogle Scholar
  17. 17.
    de Hoop B, Gietema H, van de Vorst S, Murphy K, van Klaveren RJ, Prokop M (2010) Pulmonary ground-glass nodules: increase in mass as an early indicator of growth. Radiology 255:199–206PubMedCrossRefGoogle Scholar
  18. 18.
    Kakinuma R, Ashizawa K, Kuriyama K et al (2012) Measurement of focal ground-glass opacity diameters on CT images: interobserver agreement in regard to identifying increases in the size of ground-glass opacities. Acad Radiol 19:389–394PubMedCrossRefGoogle Scholar
  19. 19.
    Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613–1623PubMedCrossRefGoogle Scholar
  20. 20.
    Pickhardt PJ, Lubner MG, Kim DH et al (2012) Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. Am J Roentgenol 199:1266–1274CrossRefGoogle Scholar
  21. 21.
    Volders D, Bols A, Haspeslagh M, Coenegrachts K (2013) Model-based iterative reconstruction and adaptive statistical iterative reconstruction techniques in abdominal CT: comparison of image quality in the detection of colorectal liver metastases. Radiology 269:469–474PubMedCrossRefGoogle Scholar
  22. 22.
    Vardhanabhuti V, Loader RJ, Mitchell GR, Riordan RD, Roobottom CA (2013) Image quality assessment of standard- and low-dose chest CT using filtered back projection, adaptive statistical iterative reconstruction, and novel model-based iterative reconstruction algorithms. Am J Roentgenol 200:545–552CrossRefGoogle Scholar
  23. 23.
    Yamada Y, Jinzaki M, Tanami Y et al (2012) Model-based iterative reconstruction technique for ultralow-dose computed tomography of the lung: a pilot study. Investig Radiol 47:482–489CrossRefGoogle Scholar
  24. 24.
    Yasaka K, Katsura M, Akahane M, Sato J, Matsuda I, Ohtomo K (2013) Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. SpringerPlus 2:209PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Chang B, Hwang JH, Choi YH et al (2013) Natural history of pure ground-glass opacity lung nodules detected by low-dose CT scan. Chest 143:172–178PubMedCrossRefGoogle Scholar
  26. 26.
    Lim HJ, Ahn S, Lee KS et al (2013) Persistent pure ground-glass opacity lung nodules ≥ 10 mm in diameter at CT scan: histopathologic comparisons and prognostic implications. Chest 144:1291–1299PubMedCrossRefGoogle Scholar
  27. 27.
    Arenas-Jimenez J (2013) Measurement of solid component in part-solid lesions with a mediastinal window setting? Radiology 268:305–306PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Hyungjin Kim
    • 1
    • 2
  • Chang Min Park
    • 1
    • 2
    • 3
  • Seong Ho Kim
    • 1
    • 2
  • Sang Min Lee
    • 1
    • 2
  • Sang Joon Park
    • 1
    • 2
    • 3
  • Kyung Hee Lee
    • 1
    • 2
  • Jin Mo Goo
    • 1
    • 2
    • 3
  1. 1.Department of RadiologySeoul National University College of MedicineSeoulSouth Korea
  2. 2.Institute of Radiation MedicineSeoul National University Medical Research CenterSeoulSouth Korea
  3. 3.Cancer Research InstituteSeoul National UniversitySeoulSouth Korea

Personalised recommendations