European Radiology

, Volume 24, Issue 10, pp 2597–2605 | Cite as

Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer

  • Cornelis G. van Niekerk
  • Jeroen A. W. M. van der Laak
  • Thomas Hambrock
  • Henk-Jan Huisman
  • J. Alfred Witjes
  • Jelle O. Barentsz
  • Christina A. Hulsbergen-van de Kaa



To correlate pharmacokinetic parameters of 3-T dynamic contrast-enhanced (DCE-)MRI with histopathologic microvascular and lymphatic parameters in organ-confined prostate cancer.


In 18 patients with unilateral peripheral zone (pT2a) tumours who underwent DCE-MRI prior to radical prostatectomy (RP), the following pharmacokinetic parameters were assessed: permeability surface area volume transfer constant (K trans), extravascular extracellular volume (Ve) and rate constant (K ep). In the RP sections blood and lymph vessels were visualised immunohistochemically and automatically examined and analysed. Parameters assessed included microvessel density (MVD), area (MVA) and perimeter (MVP) as well as lymph vessel density (LVD), area (LVA) and perimeter (LVP).


A negative correlation was found between age and K trans and K ep for tumour (r = −0.60, p = 0.009; r = −0.67, p = 0.002) and normal (r = −0.54, p = 0.021; r = −0.46, p = 0.055) tissue. No correlation existed between absolute values of microvascular parameters from histopathology and DCE-MRI. In contrast, the ratio between tumour and normal tissue (correcting for individual microvascularity variations) significantly correlated between K ep and MVD (r = 0.61, p = 0.007) and MVP (r = 0.54, p = 0.022). The lymphovascular parameters showed only a correlation between LVA and K ep (r = −0.66, p = 0.003).


Significant correlations between DCE-MRI and histopathologic parameters were found when correcting for interpatient variations in microvascularity.

Key Points

Normal prostate tissue shows strong heterogeneity in microvascularity.

Peripheral zone prostate cancer shows increased and less heterogeneous microvascularity.

Normal and tumour tissue shows considerable variation in microvascularity between patients.

DCE-MRI should take into account the interprostatic heterogeneity of microvasculature between patients.


Prostate cancer Magnetic resonance imaging Microvessel density Lymphatic density Pharmacokinetics 

Abbreviations and acronyms


dynamic contrast-enhanced magnetic resonance imaging


haematoxylin and eosin


rate constant


permeability surface area volume transfer constant


lymph vessel area


lymph vessel density


lymph vessel perimeter


microvessel area


microvessel density


microvessel perimeter


prostate-specific antigen


peripheral zone


radical prostatectomy


transition zone


extravascular extracellular volume



The scientific guarantor of this publication is Christina Hulsbergen-van de Kaa. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding from the Dutch Cancer Foundation (KWF), contract grant number KUN 2003 2529. One of the authors, Jeroen van der Laak, has significant statistical expertise. Institutional review board approval was not required because no experimental design involved animals or humans. Written informed consent was waived by the institutional review board. Some study subjects or cohorts have been previously reported by van Niekerk CG et al. (Prostate 71:91–97, 2011).

Methodology: retrospective, observational, performed at one institution.


  1. 1.
    Fine SW, Epstein JI (2008) A contemporary study correlating prostate needle biopsy and radical prostatectomy Gleason score. J Urol 179:1335–1338PubMedCrossRefGoogle Scholar
  2. 2.
    Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Baur AD, Maxeiner A, Franiel T et al (2014) Evaluation of the prostate imaging reporting and data system for the detection of prostate cancer by the results of targeted biopsy of the prostate. Invest Radiol 49:411–420PubMedCrossRefGoogle Scholar
  4. 4.
    Anastasiadis AG, Lichy MP, Nagele U et al (2006) MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol 50:738–748PubMedCrossRefGoogle Scholar
  5. 5.
    Hambrock T, Somford DM, Hoeks C et al (2010) Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol 183:520–527PubMedCrossRefGoogle Scholar
  6. 6.
    Bigler SA, Deering RE, Brawer MK (1993) Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24:220–226PubMedCrossRefGoogle Scholar
  7. 7.
    Pallares J, Rojo F, Iriarte J, Morote J, Armadans LI, de Torres I (2006) Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol Histopathol 21:857–865PubMedGoogle Scholar
  8. 8.
    van Niekerk CG, van der Laak JA, Borger ME et al (2009) Computerized whole slide quantification shows increased microvascular density in pT2 prostate cancer as compared to normal prostate tissue. Prostate 69:62–69PubMedCrossRefGoogle Scholar
  9. 9.
    Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132PubMedGoogle Scholar
  10. 10.
    Puech P, Potiron E, Lemaitre L et al (2009) Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 74:1094–1099PubMedCrossRefGoogle Scholar
  11. 11.
    Yakar D, Hambrock T, Huisman H et al (2010) Feasibility of 3 T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol 45:121–125Google Scholar
  12. 12.
    van Niekerk CG, Hulsbergen-van de Kaa CA, Barentsz JO, Witjes JA, van der Laak JA (2011) Quantitative analysis of lymph vessel characteristics in organ confined prostate cancer. Prostate 71:91–97PubMedCrossRefGoogle Scholar
  13. 13.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628PubMedCrossRefGoogle Scholar
  14. 14.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  15. 15.
    Vos PC, Hambrock T, Hulsbergen-van de Kaa CA, Futterer JJ, Barentsz JO, Huisman HJ (2008) Computerized analysis of prostate lesions in the peripheral zone using dynamic contrast enhanced MRI. Med Phys 35:888–899PubMedCrossRefGoogle Scholar
  16. 16.
    van Oort I, Bruins HM, Kiemeney LA, Knipscheer BC, Witjes JA, Hulsbergen-van de Kaa CA (2010) The length of positive surgical margins correlates with biochemical recurrence after radical prostatectomy. Histopathology 56:464–471PubMedCrossRefGoogle Scholar
  17. 17.
    Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL, Grading Committee ISUP (2005) The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol 29:1228–1242PubMedCrossRefGoogle Scholar
  18. 18.
    Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, Scheenen T, Barentsz JO (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259:453–461PubMedCrossRefGoogle Scholar
  19. 19.
    Vos PC, Hambrock T, Barenstz JO, Huisman HJ (2009) Automated calibration for computerized analysis of prostate lesions using pharmacokinetic magnetic resonance images. Med Image Comput Comput Assist Interv 12:836–843PubMedGoogle Scholar
  20. 20.
    Hambrock T, Vos PC, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ (2013) Prostate cancer: computer-aided diagnosis with multiparametric 3-T MR imaging–effect on observer performance. Radiology 266:521–530PubMedCrossRefGoogle Scholar
  21. 21.
    Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893PubMedCrossRefGoogle Scholar
  22. 22.
    Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626PubMedCrossRefGoogle Scholar
  23. 23.
    Schlemmer HP, Merkle J, Grobholz R et al (2004) Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 14:309–317PubMedCrossRefGoogle Scholar
  24. 24.
    Franiel T, Ludemann L, Rudolph B et al (2009) Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters. Radiology 252:101–108PubMedCrossRefGoogle Scholar
  25. 25.
    Bostwick DG, Grignon DJ, Hammond ME et al (2000) Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:995–1000PubMedGoogle Scholar
  26. 26.
    Rosenkrantz AB, Sabach A, Babb JS et al (2013) Prostate cancer: comparison of dynamic contrast-enhanced MRI techniques for localisation of peripheral zone tumor. AJR Am J Roentgenol 201:W471–W478PubMedCrossRefGoogle Scholar
  27. 27.
    Burton JB, Priceman SJ, Sung JL et al (2008) Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68:7828–7837PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Cornelis G. van Niekerk
    • 1
  • Jeroen A. W. M. van der Laak
    • 1
  • Thomas Hambrock
    • 2
  • Henk-Jan Huisman
    • 2
  • J. Alfred Witjes
    • 3
  • Jelle O. Barentsz
    • 2
  • Christina A. Hulsbergen-van de Kaa
    • 1
  1. 1.Department of PathologyRadboud University Medical CentreNijmegenThe Netherlands
  2. 2.Department of RadiologyRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.Department of UrologyRadboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations