Advertisement

European Radiology

, Volume 24, Issue 7, pp 1686–1693 | Cite as

Pixel-by-pixel analysis of DCE-MRI curve shape patterns in knees of active and inactive juvenile idiopathic arthritis patients

  • Robert HemkeEmail author
  • Cristina Lavini
  • Charlotte M. Nusman
  • J. Merlijn van den Berg
  • Koert M. Dolman
  • Dieneke Schonenberg-Meinema
  • Marion A. J. van Rossum
  • Taco W. Kuijpers
  • Mario Maas
Pediatric

Abstract

Objectives

To compare DCE-MRI parameters and the relative number of time–intensity curve (TIC) shapes as derived from pixel-by-pixel DCE-MRI TIC shape analysis between knees of clinically active and inactive juvenile idiopathic arthritis (JIA) patients.

Methods

DCE-MRI data sets were prospectively obtained. Patients were classified into two clinical groups: active disease (n = 43) and inactive disease (n = 34). Parametric maps, showing seven different TIC shape types, were created per slice. Statistical measures of different TIC shapes, maximal enhancement (ME), maximal initial slope (MIS), initial area under the curve (iAUC), time-to-peak (TTP), enhancing volume (EV), volume transfer constant (K trans), extravascular space fractional volume (V e) and reverse volume transfer constant (k ep) of each voxel were calculated in a three-dimensional volume-of-interest of the synovial membrane.

Results

Imaging findings from 77 JIA patients were analysed. Significantly higher numbers of TIC shape 4 (P = 0.008), median ME (P = 0.015), MIS (P = 0.001) and iAUC (P = 0.002) were observed in clinically active compared with inactive patients. TIC shape 5 showed higher presence in the clinically inactive patients (P = 0.036).

Conclusions

The pixel-by-pixel DCE-MRI TIC shape analysis method proved capable of differentiating clinically active from inactive JIA patients by the difference in the number of TIC shapes, as well as the descriptive parameters ME, MIS and iAUC.

Key Points

The pixel-by-pixel TIC shape method differentiates clinically active and inactive JIA patients

Significantly higher numbers of TIC shape 4 were observed in clinically active patients

DCE-MRI parameters ME, MIS and iAUC differ between active and inactive patients

The pixel-by-pixel analysis method allows direct visualization of the heterogeneously distributed disease

The DCE-MRI TIC shape method may serve as a quantitative outcome measure

Keywords

Juvenile idiopathic arthritis Dynamic contrast-enhanced Magnetic resonance imaging Outcome measure Knee joint 

Notes

Acknowledgments

The scientific guarantor of this publication is Prof. Dr. M. Maas. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. A research grant was received from the Reumafonds (NR 10-1-403); Dutch Arthritis Association (Amsterdam, the Netherlands). The Dutch Arthritis Association was not involved in designing and conducting this study, did not have access to the data, and was not involved in data analysis or preparation of this manuscript. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, observational, multicenter study.

References

  1. 1.
    Magni-Manzoni S, Rossi F, Pistorio A et al (2003) Prognostic factors for radiographic progression, radiographic damage, and disability in juvenile idiopathic arthritis. Arthritis Rheum 48:3509–3517PubMedCrossRefGoogle Scholar
  2. 2.
    Oen K, Reed M, Malleson PN et al (2003) Radiologic outcome and its relationship to functional disability in juvenile rheumatoid arthritis. J Rheumatol 30:832–840PubMedGoogle Scholar
  3. 3.
    Palmisani E, Solari N, Magni-Manzoni S et al (2006) Correlation between juvenile idiopathic arthritis activity and damage measures in early, advanced, and longstanding disease. Arthritis Rheum 55:843–849PubMedCrossRefGoogle Scholar
  4. 4.
    Haverman L, Grootenhuis MA, van den Berg JM et al (2012) Predictors of health-related quality of life in children and adolescents with juvenile idiopathic arthritis: results from a web-based survey. Arthritis Care Res 64:694–703CrossRefGoogle Scholar
  5. 5.
    Albers HM, Wessels JA, van der Straaten RJ et al (2009) Time to treatment as an important factor for the response to methotrexate in juvenile idiopathic arthritis. Arthritis Rheum 61:46–51PubMedCrossRefGoogle Scholar
  6. 6.
    Vilca I, Munitis PG, Pistorio A et al (2010) Predictors of poor response to methotrexate in polyarticular-course juvenile idiopathic arthritis: analysis of the PRINTO methotrexate trial. Ann Rheum Dis 69:1479–1483PubMedCrossRefGoogle Scholar
  7. 7.
    Miller E, Uleryk E, Doria AS (2009) Evidence-based outcomes of studies addressing diagnostic accuracy of MRI of juvenile idiopathic arthritis. AJR Am J Roentgenol 192:1209–1218PubMedCrossRefGoogle Scholar
  8. 8.
    Hemke R, Kuijpers TW, van den Berg JM et al (2013) The diagnostic accuracy of unenhanced MRI in the assessment of joint abnormalities in juvenile idiopathic arthritis. Eur Radiol 23:1998–2004PubMedCrossRefGoogle Scholar
  9. 9.
    Malattia C, Damasio MB, Magnaguagno F et al (2008) Magnetic resonance imaging, ultrasonography, and conventional radiography in the assessment of bone erosions in juvenile idiopathic arthritis. Arthritis Rheum 59:1764–1772PubMedCrossRefGoogle Scholar
  10. 10.
    Doria AS, Babyn PS, Feldman B (2006) A critical appraisal of radiographic scoring systems for assessment of juvenile idiopathic arthritis. Pediatr Radiol 36:759–772PubMedCrossRefGoogle Scholar
  11. 11.
    Cimmino MA, Innocenti S, Livrone F, Magnaguagno F, Silvestri E, Garlaschi G (2003) Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with rheumatoid arthritis can discriminate active from inactive disease. Arthritis Rheum 48:1207–1213PubMedCrossRefGoogle Scholar
  12. 12.
    Axelsen M, Stoltenberg M, Poggenborg R et al (2012) Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand J Rheumatol 41:89–94PubMedCrossRefGoogle Scholar
  13. 13.
    Østergaard M, Stoltenberg M, Lovgreen-Nielsen P, Volck B, Sonne-Holm S, Lorenzen I (1998) Quantification of synovistis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging 16:743–754PubMedCrossRefGoogle Scholar
  14. 14.
    Workie DW, Graham TB, Laor T et al (2007) Quantitative MR characterization of disease activity in the knee in children with juvenile idiopathic arthritis: a longitudinal pilot study. Pediatr Radiol 37:535–543PubMedCrossRefGoogle Scholar
  15. 15.
    Workie DW, Dardzinski BJ (2005) Quantifying dynamic contrast-enhanced MRI of the knee in children with juvenile rheumatoid arthritis using an arterial input function (AIF) extracted from popliteal artery enhancement, and the effect of the choice of the AIF on the kinetic parameters. Magn Reson Med 54:560–568PubMedCrossRefGoogle Scholar
  16. 16.
    van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M (2009) Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis–a feasibility study. Radiology 253:234–240PubMedCrossRefGoogle Scholar
  17. 17.
    van de Sande MG, van der Leij C, Lavini C, Wijbrandts CA, Maas M, Tak PP (2012) Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology (Oxford) 51:1240–1245CrossRefGoogle Scholar
  18. 18.
    Petty RE, Southwood TR, Manners P et al (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392PubMedGoogle Scholar
  19. 19.
    Wallace CA, Giannini EH, Huang B, Itert L, Ruperto N (2011) American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res 63:929–936CrossRefGoogle Scholar
  20. 20.
    Singh G, Athreya BH, Fries JF, Goldsmith DP (1994) Measurement of health status in children with juvenile rheumatoid arthritis. Arthritis Rheum 37:1761–1769PubMedCrossRefGoogle Scholar
  21. 21.
    Wulffraat N, van der Net JJ, Ruperto N et al (2001) The Dutch version of the Childhood Health Assessment Questionnaire (CHAQ) and the Child Health Questionnaire (CHQ). Clin Exp Rheumatol 19:S111–S115PubMedGoogle Scholar
  22. 22.
    Hemke R, van Veenendaal M, Kuijpers TW, van Rossum MA, Maas M (2012) Increasing feasibility and patient comfort of MRI in children with juvenile idiopathic arthritis. Pediatr Radiol 42:440–448PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lavini C, Maas M (2008) DCE-MRI analysis package comprising pixel-by-pixel classification of time intensity curves shapes, permeability maps and Gd concentration calculation. MAGMA 21-S1:486Google Scholar
  24. 24.
    Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M (2007) Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging 25:604–612PubMedCrossRefGoogle Scholar
  25. 25.
    Schabel MC, Parker DL (2008) Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol 53:2345–2373PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  27. 27.
    Rooney WD, Johnson G, Li X et al (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318PubMedCrossRefGoogle Scholar
  28. 28.
    Orton MR, d'Arcy JA, Walker-Samuel S et al (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys Med Biol 53:1225–1239PubMedCrossRefGoogle Scholar
  29. 29.
    Malattia C, Damasio MB, Pistorio A et al (2010) Development and preliminary validation of a paediatric-targeted MRI scoring system for the assessment of disease activity and damage in juvenile idiopathic arthritis. Ann Rheum Dis 70:440–446PubMedCrossRefGoogle Scholar
  30. 30.
    Hemke R, van Rossum MA, van Veenendaal M et al (2013) Reliability and responsiveness of the Juvenile Arthritis MRI Scoring (JAMRIS) system for the knee. Eur Radiol 23:1075–1083PubMedCrossRefGoogle Scholar
  31. 31.
    Malattia C, Damasio MB, Basso C et al (2010) Dynamic contrast-enhanced magnetic resonance imaging in the assessment of disease activity in patients with juvenile idiopathic arthritis. Rheumatology (Oxford) 49:178–185CrossRefGoogle Scholar
  32. 32.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232PubMedCrossRefGoogle Scholar
  33. 33.
    Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34:229–246PubMedCrossRefGoogle Scholar
  34. 34.
    Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, Kaick G (1999) Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 10:286–294PubMedCrossRefGoogle Scholar
  35. 35.
    Hodgson RJ, O'Connor P, Moots R (2008) MRI of rheumatoid arthritis image quantitation for the assessment of disease activity, progression and response to therapy. Rheumatology (Oxford) 47:13–21CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Robert Hemke
    • 1
    Email author
  • Cristina Lavini
    • 1
  • Charlotte M. Nusman
    • 1
    • 2
  • J. Merlijn van den Berg
    • 2
  • Koert M. Dolman
    • 3
    • 4
  • Dieneke Schonenberg-Meinema
    • 2
  • Marion A. J. van Rossum
    • 2
    • 3
  • Taco W. Kuijpers
    • 2
  • Mario Maas
    • 1
  1. 1.Department of Radiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital AMCUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Pediatric Rheumatology, ReadeAmsterdamThe Netherlands
  4. 4.Department of PediatricsSt. Lucas Andreas HospitalAmsterdamThe Netherlands

Personalised recommendations