European Radiology

, Volume 24, Issue 6, pp 1197–1203 | Cite as

Application of the diffusion kurtosis model for the study of breast lesions

  • Luísa Nogueira
  • Sofia Brandão
  • Eduarda Matos
  • Rita Gouveia Nunes
  • Joana Loureiro
  • Isabel Ramos
  • Hugo Alexandre Ferreira



To evaluate diffusion-weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in the differentiation and characterisation of breast lesions.


Thirty-six women underwent breast magnetic resonance imaging (MRI) including a DWI sequence with multiple b-values (50–3,000 s/mm2). Mean values for apparent diffusion coefficient (ADC), mean diffusivity (MD) and mean kurtosis (MK) were calculated by lesion type and histological subtype. Differences and correlation between parameters were determined.


Forty-four lesions were found. There were significant differences between benign and malignant lesions for all parameters (ADC, p = 0.017; MD, p = 0.028; MK, p = 0.017). ADC and MD were higher for benign (1.96 ± 0.41 × 10−3 and 2.17 ± 0.42 × 10−3 mm2/s, respectively) than for malignant lesions (1.33 ± 0.18 × 10−3 and 1.52 ± 0.50 × 10−3 mm2/s). MK was higher for malignant (0.61 ± 0.27) than benign lesions (0.37 ± 0.18). We found differences between invasive ductal carcinoma (IDC) and fibroadenoma (FA) for all parameters (ADC, MD and MK): p = 0.016, 0.022 and 0.016, respectively. FA and fibrocystic change (FC) showed differences only in MK (p = 0.016).


Diffusion in breast lesions follows a non-Gaussian distribution. MK enables differentiation and characterisation of breast lesions, providing new insights into microstructural complexity. To confirm these results, further investigation in a broader sample should be performed.

Key Points

• The diffusion kurtosis model provides new information regarding breast lesions

• MD and MK are valid parameters to characterise tissue microstructure

• MK enables improved lesion differentiation

• MK is able to differentiate lesions that display similar ADC values


Diffusion weighted imaging Diffusion kurtosis imaging Magnetic resonance imaging Breast lesions Mean kurtosis 



Diffusion-weighted imaging


Apparent diffusion coefficient


Probability of displacement function


Diffusion kurtosis imaging


Mean diffusivity


Mean kurtosis


Invasive ductal carcinoma


Invasive lobular carcinoma



The scientific guarantor of this publication is Isabel Maria Amorim Pereira Ramos. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This work was sponsored by Foundation of Science and Technology (FCT)/School of Health Technology of Porto (ESTSP)/Polytechnic Institute of Porto (IPP) with grant number: SFRH/BD/50027/2009 and grant number: PEst-OE/SAU/UI0645/2011. One of the authors has significant statistical expertise. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.


  1. 1.
    Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178PubMedCrossRefGoogle Scholar
  2. 2.
    Bogner W, Gruber S, Pinker K et al (2009) Diffusion-weighted MR for differentiation of breast lesions at 3.0 T: how does selection of diffusion protocols affect diagnosis? Radiology 253:341–351PubMedCrossRefGoogle Scholar
  3. 3.
    Peters N, Vincken K, Van den Bosch M, Luijten P, Mali W, Bartels L (2010) Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of b-values. J Magn Reson Imaging 31:1100–1105PubMedCrossRefGoogle Scholar
  4. 4.
    El Khouli R, Jacobs AM, Mezban DS, Huang P, Kamel JK, Bluemke AD (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73CrossRefGoogle Scholar
  5. 5.
    Lo G, Ai V, Chan J et al (2009) Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 33:63–69PubMedCrossRefGoogle Scholar
  6. 6.
    Pereira F, Martins G, Oliveira R (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110PubMedCrossRefGoogle Scholar
  7. 7.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed 15:456–67PubMedCrossRefGoogle Scholar
  8. 8.
    Gillies R, Raghunand N, Karczmar G, Bhujwalla Z (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450PubMedCrossRefGoogle Scholar
  9. 9.
    Jensen J, Helpern J, Ramani A, Lu H, Kaczynski K (2005) Diffusion kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440PubMedCrossRefGoogle Scholar
  10. 10.
    Tamura T, Usui S, Murakami S et al (2012) Comparisons of multi b-value DWI signal analysis with pathological specimen of breast cancer. Magn Reson Med 68:890–897PubMedCrossRefGoogle Scholar
  11. 11.
    Poot DH, Den Dekker AJ, Achten E, Verhoye M, Sijbers J (2010) Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging 29:3CrossRefGoogle Scholar
  12. 12.
    Jansen J, Stambuk H, Koutcher J, Shukla-Dave A (2010) Non-Gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study. AJNR Am J Neuroradiol 31:741–748PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Quentin M, Blondin D, Klasen J et al (2012) Comparison of different mathematical models of diffusion-weighted prostate MR imaging. Magn Reson Imaging 30:1468–1474PubMedCrossRefGoogle Scholar
  14. 14.
    Cheung M, Hui E, Chan K, Helpen J, Qi L, Wu E (2009) Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage 45:386–392PubMedCrossRefGoogle Scholar
  15. 15.
    Falangola MF, Jensen JH, Babb JS et al (2008) Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging 28:1345–50PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chen S, Pickard JD, Harris NG (2003) Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 1:87–102CrossRefGoogle Scholar
  17. 17.
    Raab P, Hattingen E, Franz K, Zanella FE, Lanferman H (2010) Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 254:876–81PubMedCrossRefGoogle Scholar
  18. 18.
    Trampel R, Jensen JH, Lee RF, Kamenetskiy I, McGuinness G, Johnson G (2006) Diffusional kurtosis imaging in the lung using hyperpolarized 3He. Magn Reson Med 56:733–737PubMedCrossRefGoogle Scholar
  19. 19.
    Borlinhas F, Lacerda L, Andrade A, Ferreira HA (2012) Diffusional kurtosis as a biomarker of breast tumors (E-poster presentation). European Congress of Radiology 2012, 1–5 March 2012, Vienna, Austria. doi: 10.1594/erc2012/C-1369
  20. 20.
    Ikeda DM, Hylton NM, Kuhl CK et al (2003) BI-RADS: magnetic resonance imaging, 1st edn. In: D’Orsi CJ, Mendelson EB, Ikeda DM et al (eds) Breast imaging reporting and data system: ACR BI-RADS—breast imaging atlas. American College of Radiology, RestonGoogle Scholar
  21. 21.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441CrossRefGoogle Scholar
  22. 22.
    Costantini M, Belli P, Rinaldi P (2010) Diffusion-weighted imaging in breast cancer: relationship between apparent diffusion coefficient and tumour aggressiveness. Clin Radiol 65:1008–1012CrossRefGoogle Scholar
  23. 23.
    Paran Y, Bendel P, Margalit R, Degani H (2004) Water diffusion in the different microenvironments of breast cancer. NMR Biomed 17:170–180PubMedCrossRefGoogle Scholar
  24. 24.
    Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43:828–836PubMedCrossRefGoogle Scholar
  25. 25.
    Sukstanskii AL, Yablonskiy DA (2002) Effects of restricted diffusion on MR signal formation. J Magn Reson 157:92–105PubMedCrossRefGoogle Scholar
  26. 26.
    Kiselev VG, Il’yasov KA (2007) Is the “biexponential diffusion” biexponential? Magn Reson Med 57:464–469PubMedCrossRefGoogle Scholar
  27. 27.
    Pereira F, Martins G, Oliveira R (2011) Diffusion magnetic resonance imaging of the breast. Magn Reson Imaging Clin N Am 19:95–110PubMedCrossRefGoogle Scholar
  28. 28.
    De Santis S, Gabrielli A, Palombo M, Maraviglia B, Capuani S (2011) Non-Gaussian diffusion imaging: a brief practical review. Magn Reson Imaging 29:1410–1416PubMedCrossRefGoogle Scholar
  29. 29.
    Fornasa F (2011) Diffusion-weighted magnetic resonance imaging: what makes water run fast or slow? J Clin Imaging Sci 1:1–7CrossRefGoogle Scholar
  30. 30.
    Roth Y, Ocherashvilli A, Daniels D et al (2008) Quantification of water compartmentation in cell suspensions by diffusion-weighted and T2-weighted MRI. Magn Reson Imaging 26:88–102PubMedCrossRefGoogle Scholar
  31. 31.
    Koh D, Collins D (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Luísa Nogueira
    • 1
  • Sofia Brandão
    • 2
  • Eduarda Matos
    • 3
  • Rita Gouveia Nunes
    • 4
  • Joana Loureiro
    • 2
  • Isabel Ramos
    • 5
  • Hugo Alexandre Ferreira
    • 4
  1. 1.Department of RadiologySchool of Health Technology of Porto/Polytechnic Institute of Porto (ESTSP/IPP)Vila Nova de GaiaPortugal
  2. 2.MRI Unit, Department of RadiologyHospital de São JoãoPortoPortugal
  3. 3.Department of Health Community, Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoPortoPortugal
  4. 4.Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of SciencesUniversity of LisbonLisboaPortugal
  5. 5.Head Department of RadiologyHospital de São João/Faculty of Medicine of Porto University (FMUP)PortoPortugal

Personalised recommendations