European Radiology

, Volume 24, Issue 6, pp 1257–1265 | Cite as

Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

  • Tobias Struffert
  • Michael Hauer
  • Rosemarie Banckwitz
  • Christoph Köhler
  • Kevin Royalty
  • Arnd Doerfler
Computed Tomography



Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols.


Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer.


(1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv.


The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections.

Key Points

Effective dose of FD-CT in comparison to MSCT is in comparable range.

Collimation decreases the dose of FD-CT effectively.

Effective dose of 3-D angiography is identical to 2-D DSA.

Different FD-CT programs have different dose.


Flat-detector CT Multislice CT Effective dose to patient Thermoluminescent dosimetry Neuroradiology 



The scientific guarantor of this publication is Prof. Arnd Doerfler. The authors of this manuscript declare relationships with the following companies: Rosemarie Banckwitz, Christoph Koehler and Kevin Royalty are full-time Siemens employees. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was not required because we performed a phantom study. Human subjects were not involved. Animals were not involved. No study subjects or cohorts have been previously reported. Methodology: experimental.


  1. 1.
    Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779CrossRefPubMedGoogle Scholar
  2. 2.
    Pfaff J, Struffert T, Gölitz P, Doerfler A (2013) Angiographic CT for intraprocedural monitoring of complex neuroendovascular procedures. AJNR Am J Neuroradiol 34:E77–E80CrossRefPubMedGoogle Scholar
  3. 3.
    Tanoue S, Kiyosue H, Kenai H, Nakamura T, Yamashita M, Mori H (2000) Three-dimensional reconstructed images after rotational angiography in the evaluation of intracranial aneurysms: surgical correlation. Neurosurgery 47:866–871CrossRefPubMedGoogle Scholar
  4. 4.
    von Gottberg P, Psychogios M, Schuetze G, Cohnen J, Zwaka P et al (2013) Feasibility of flat panel detector computed tomography for position assessment of external ventricular drainage. Neurol Neurochir Pol 47:32–42CrossRefGoogle Scholar
  5. 5.
    Struffert T, Richter G, Engelhorn T, Doelken M, Goelitz P, Kalender WA et al (2009) Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases. Eur Radiol 19:619–625CrossRefPubMedGoogle Scholar
  6. 6.
    Heran NS, Song JK, Namba K, Smith W, Niimi Y, Berenstein A (2006) The utility of DynaCT in neuroendovascular procedures. AJNR Am J Neuroradiol 27:330–332PubMedGoogle Scholar
  7. 7.
    Bartling SH, Gupta R, Torkos A, Dullin C, Eckhardt G, Lenarz T et al (2006) Flat-panel volume computed tomography for cochlear implant electrode array examination in isolated temporal bone specimens. Otol Neurotol 27:491–498CrossRefPubMedGoogle Scholar
  8. 8.
    Bozzato A, Struffert T, Hertel V, Iro H, Hornung J (2010) Analysis of the accuracy of high-resolution computed tomography techniques for the measurement of stapes prostheses. Eur Radiol 20:566–571CrossRefPubMedGoogle Scholar
  9. 9.
    Buhk JH, Lingor P, Knauth M (2008) Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting. Neuroradiology 50:349–354PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Struffert T, Kloska S, Engelhorn T, Deuerling-Zheng Y, Ott S, Doelken M et al (2011) Optimized intravenous Flat Detector CT for non-invasive visualization of intracranial stents: first results. Eur Radiol 21:411–418CrossRefPubMedGoogle Scholar
  11. 11.
    Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Boese J, Zellerhoff M et al (2011) Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol 21:882–889CrossRefPubMedGoogle Scholar
  12. 12.
    Kyriakou Y, Richter G, Dörfler A, Kalender WA (2008) Neuroradiologic applications with routine C-arm flat panel detector CT: evaluation of patient dose measurements. AJNR Am J Neuroradiol 29:1930–1936CrossRefPubMedGoogle Scholar
  13. 13.
    Geleijns J, Salvadó Artells M, de Bruin PW, Matter R, Muramatsu Y, McNitt-Gray MF (2009) Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner. Phys Med Biol 54:3141–3159PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    International Commission on Radiological Protection (2007) 2007 Recommendations of the ICRP. ICRP Publication 103. Ann. ICRP 37(2–4). Elsevier Science LtdGoogle Scholar
  15. 15.
    Exact description available via
  16. 16.
    Exact description of the ionization chamber, annealing oven and annealing procedure available via
  17. 17.
    Information available at
  18. 18.
    Paul J, Krauss B, Banckwitz R, Maentele W, Bauer RW, Vogl TJ (2012) Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: study with an anthropomorphic and water phantom. Eur J Radiol 81:e699–e703CrossRefPubMedGoogle Scholar
  19. 19.
    Paul J, Banckwitz R, Krauss B, Vogl TJ, Maentele W, Bauer RW (2012) Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT. Eur J Radiol 81:e507–e512CrossRefPubMedGoogle Scholar
  20. 20.
    Mahnken AH, Sedlmair M, Ritter C, Banckwitz R, Flohr T (2012) Efficacy of lower-body shielding in computed tomography fluoroscopy-guided interventions. Cardiovasc Intervent Radiol 35:1475–1479CrossRefPubMedGoogle Scholar
  21. 21.
    Kim S, Sopko D, Toncheva G, Enterline D, Keijzers B, Yoshizumi TT (2012) Radiation dose from 3D rotational X-ray imaging: organ and effective dose with conversion factors. Radiat Prot Dosim 150:50–54CrossRefGoogle Scholar
  22. 22.
    Bai M, Liu X, Liu B (2013) Effective patient dose during neuroradiological C-arm CT procedures. Diagn Interv Radiol 19:29–32PubMedGoogle Scholar
  23. 23.
    Tsapaki V, Vano E, Muavrikou I, Nueofotistou V, Gallego JJ, Fernandez JM et al (2008) Comparison of patient dose in two-dimensional carotid arteriography and three-dimensional rotational angiography. Cardiovasc Intervent Radiol 31:477–482CrossRefPubMedGoogle Scholar
  24. 24.
    Schueler BA, Kallmes DF, Cloft HJ (2005) 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol 26:1898–1901PubMedGoogle Scholar
  25. 25.
    Bai M, Liu B, Mu H, Liu X, Jiang Y (2012) The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol 81:3577–3580CrossRefPubMedGoogle Scholar
  26. 26.
    Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA et al (2010) Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol 31:1462–1469CrossRefPubMedGoogle Scholar
  27. 27.
    Diekmann S, Siebert E, Juran R, Roll M, Deeg W, Bauknecht HC et al (2010) Dose exposure of patients undergoing comprehensive stroke imaging by multidetector-row CT: comparison of 320-detector row and 64-detector row CT scanners. AJNR Am J Neuroradiol 31:1003–1009CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Tobias Struffert
    • 1
  • Michael Hauer
    • 1
  • Rosemarie Banckwitz
    • 2
  • Christoph Köhler
    • 2
  • Kevin Royalty
    • 3
    • 4
  • Arnd Doerfler
    • 1
  1. 1.Department of NeuroradiologyUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Siemens AG, Healthcare SectorForchheimGermany
  3. 3.Siemens Medical Solutions, USA, IncHoffman EstatesUSA
  4. 4.Department of Biomedical Engineering and School of Medicine and Public HealthUniversity of WisconsinMadisonUSA

Personalised recommendations