European Radiology

, Volume 24, Issue 6, pp 1290–1299 | Cite as

Radial volumetric imaging breath-hold examination (VIBE) with k-space weighted image contrast (KWIC) for dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI of the liver: advantages over Cartesian VIBE in the arterial phase

  • Yasunari Fujinaga
  • Ayumi Ohya
  • Hirokazu Tokoro
  • Akira Yamada
  • Kazuhiko Ueda
  • Hitoshi Ueda
  • Yoshihiro Kitou
  • Yasuo Adachi
  • Aya Shiobara
  • Naomichi Tamaru
  • Marcel D. Nickel
  • Katsuya Maruyama
  • Masumi Kadoya
Magnetic Resonance

Abstract

Objectives

To compare radial volumetric imaging breath-hold examination with k-space weighted image contrast reconstruction (r-VIBE-KWIC) to Cartesian VIBE (c-VIBE) in arterial phase dynamic gadoxetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (DCE-MRI) of the liver.

Methods

We reviewed 53 consecutive DCE-MRI studies performed on a 3-T unit using c-VIBE and 53 consecutive cases performed using r-VIBE-KWIC with full-frame image subset (r-VIBEfull) and sub-frame image subsets (r-VIBEsub; temporal resolution, 2.5–3 s). All arterial phase images were scored by two readers on: (1) contrast-enhancement ratio (CER) in the abdominal aorta; (2) scan timing; (3) artefacts; (4) visualisation of the common, right, and left hepatic arteries.

Results

Mean abdominal aortic CERs for c-VIBE, r-VIBEfull, and r-VIBEsub were 3.2, 4.3 and 6.5, respectively. There were significant differences between each group (P < 0.0001). The mean score for c-VIBE was significantly lower than that for r-VIBEfull and r-VIBEsub in all factors except for visualisation of the common hepatic artery (P < 0.05). The mean score of all factors except for scan timing for r-VIBEsub was not significantly different from that for r-VIBEfull.

Conclusions

Radial VIBE-KWIC provides higher image quality than c-VIBE, and r-VIBEsub features high temporal resolution without image degradation in arterial phase DCE-MRI.

Key Points

Radial VIBE-KWIC minimised artefact and produced high-quality and high-temporal-resolution images.

Maximum abdominal aortic enhancement was observed on sub-frame images of r-VIBE-KWIC.

Using r-VIBE-KWIC, optimal arterial phase images were obtained in over 90 %.

Using r-VIBE-KWIC, visualisation of the hepatic arteries was improved.

A two-reader study revealed r-VIBE-KWIC’s advantages over Cartesian VIBE.

Keywords

Radial VIBE k-space weighted image contrast Gd-EOB-DTPA Dynamic contrast-enhanced MRI Liver 

Abbreviations

VIBE

Volumetric imaging breath-hold examination

KWIC

k-space weighted image contrast reconstruction

DCE-MRI

Dynamic contrast-enhanced magnetic resonance imaging

CER

Contrast-enhancement ratio

References

  1. 1.
    Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183:59–64PubMedGoogle Scholar
  2. 2.
    Reimer P, Rummeny EJ, Shamsi K et al (1996) Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology 199:177–183PubMedGoogle Scholar
  3. 3.
    Huppertz A, Balzer T, Blakeborough A et al (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275PubMedCrossRefGoogle Scholar
  4. 4.
    Bluemke DA, Sahani D, Amendola M et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237:89–98PubMedCrossRefGoogle Scholar
  5. 5.
    Hammerstingl R, Huppertz A, Breuer J et al (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesions. Eur Radiol 18:457–467PubMedCrossRefGoogle Scholar
  6. 6.
    Petersein J, Spinazzi A, Giovagnoni A et al (2000) Focal liver lesions: evaluation of the efficacy of gadobenate dimeglumine in MR imaging—a multicenter phase III clinical study. Radiology 215:727–736PubMedCrossRefGoogle Scholar
  7. 7.
    Brismar TB, Dahlstrom N, Edsborg N, Persson A, Smedby O, Albiin N (2009) Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers. Acta Radiol 50:709–715PubMedCrossRefGoogle Scholar
  8. 8.
    Tamada T, Ito K, Sone T et al (2009) Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA. J Magn Reson Imaging 29:636–640PubMedCrossRefGoogle Scholar
  9. 9.
    Kuhn JP, Hegenscheid K, Siegmund W, Froehlich CP, Hosten N, Puls R (2009) Normal dynamic MRI enhancement patterns of the upper abdominal organs: gadoxetic acid compared with gadobutrol. AJR Am J Roentgenol 193:1318–1323PubMedCrossRefGoogle Scholar
  10. 10.
    Fujinaga Y, Ueda H, Kitou Y, Tsukahara Y, Sugiyama Y, Kadoya M (2012) Time-intensity curve in the abdominal aorta on dynamic contrast-enhanced MRI with high temporal and spatial resolution: Gd-EOB-DTPA versus Gd-DTPA in vivo. Jpn J Radiol 31:166–171PubMedCrossRefGoogle Scholar
  11. 11.
    Tanimoto A, Lee JM, Murakami T, Huppertz A, Kudo M, Grazioli L (2009) Consensus report of the 2nd International Forum for Liver MRI. Eur Radiol 19:S975–S989PubMedCrossRefGoogle Scholar
  12. 12.
    Svensson J, Petersson JS, Stahlberg F, Larsson EM, Leander P, Olsson LE (1999) Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J Magn Reson Imaging 10:919–928PubMedCrossRefGoogle Scholar
  13. 13.
    Vigen KK, Peters DC, Grist TM, Block WF, Mistretta CA (2000) Undersampled projection-reconstruction imaging for time-resolved contrast-enhanced imaging. Magn Reson Med 43:170–176PubMedCrossRefGoogle Scholar
  14. 14.
    Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824PubMedCrossRefGoogle Scholar
  15. 15.
    Kim KW, Lee JM, Jeon YS et al (2012) Free-breathing dynamic contrast-enhanced MRI of the abdomen and chest using a radial gradient echo sequence with K-space weighted image contrast (KWIC). Eur Radiol 23:1352–1360PubMedCrossRefGoogle Scholar
  16. 16.
    Kim JH, Lee JM, Park JH et al (2013) Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment—a preliminary study. Radiology 266:185–196PubMedCrossRefGoogle Scholar
  17. 17.
    Brodsky EK, Bultman EM, Johnson KM et al (2013) High-spatial and high-temporal resolution dynamic contrast-enhanced perfusion imaging of the liver with time-resolved three-dimensional radial MRI. Magn Reson Med. doi:10.1002/mrm.24727 Google Scholar
  18. 18.
    Ueda K, Matsui O, Kawamori Y et al (1998) Hypervascular hepatocellular carcinoma: evaluation of hemodynamics with dynamic CT during hepatic arteriography. Radiology 206:161–166PubMedGoogle Scholar
  19. 19.
    Miyayama S, Matsui O, Ueda K et al (2000) Hemodynamics of small hepatic focal nodular hyperplasia: evaluation with single-level dynamic CT during hepatic arteriography. AJR Am J Roentgenol 174:1567–1569PubMedCrossRefGoogle Scholar
  20. 20.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  21. 21.
    Yagyu Y, Awai K, Inoue M et al (2005) MDCT of hypervascular hepatocellular carcinomas: a prospective study using contrast materials with different iodine concentrations. AJR Am J Roentgenol 184:1535–1540PubMedCrossRefGoogle Scholar
  22. 22.
    Sofue K, Tsurusaki M, Kawasaki R, Fujii M, Sugimura K (2011) Evaluation of hypervascular hepatocellular carcinoma in cirrhotic liver: comparison of different concentrations of contrast material with multi-detector row helical CT–a prospective randomized study. Eur J Radiol 80:e237–e242PubMedCrossRefGoogle Scholar
  23. 23.
    Chung SH, Kim MJ, Choi JY, Hong HS (2010) Comparison of two different injection rates of gadoxetic acid for arterial phase MRI of the liver. J Magn Reson Imaging 31:365–372PubMedCrossRefGoogle Scholar
  24. 24.
    Haradome H, Grazioli L, Tsunoo M et al (2010) Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd-EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging 32:334–340PubMedCrossRefGoogle Scholar
  25. 25.
    Ito K, Fujita T, Shimizu A et al (2004) Multiarterial phase dynamic MRI of small early enhancing hepatic lesions in cirrhosis or chronic hepatitis: differentiating between hypervascular hepatocellular carcinomas and pseudolesions. AJR Am J Roentgenol 183:699–705PubMedCrossRefGoogle Scholar
  26. 26.
    Mori K, Yoshioka H, Takahashi N et al (2005) Triple arterial phase dynamic MRI with sensitivity encoding for hypervascular hepatocellular carcinoma: comparison of the diagnostic accuracy among the early, middle, late, and whole triple arterial phase imaging. AJR Am J Roentgenol 184:63–69PubMedCrossRefGoogle Scholar
  27. 27.
    Glover GH, Noll DC (1993) Consistent projection reconstruction (CPR) techniques for MRI. Magn Reson Med 29:345–351PubMedCrossRefGoogle Scholar
  28. 28.
    Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098PubMedCrossRefGoogle Scholar
  29. 29.
    Kagawa Y, Okada M, Kumano S et al (2011) Optimal scanning protocol of arterial dominant phase for hypervascular hepatocellular carcinoma with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MR. J Magn Reson Imaging 33:864–872PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • Yasunari Fujinaga
    • 1
  • Ayumi Ohya
    • 1
  • Hirokazu Tokoro
    • 1
  • Akira Yamada
    • 1
  • Kazuhiko Ueda
    • 1
  • Hitoshi Ueda
    • 2
  • Yoshihiro Kitou
    • 2
  • Yasuo Adachi
    • 2
  • Aya Shiobara
    • 2
  • Naomichi Tamaru
    • 2
  • Marcel D. Nickel
    • 3
  • Katsuya Maruyama
    • 4
  • Masumi Kadoya
    • 1
  1. 1.Department of RadiologyShinshu University School of MedicineMatsumotoJapan
  2. 2.Radiology Division of Shinshu University HospitalMatsumotoJapan
  3. 3.Siemens AG Healthcare Sector, H IM MR PI TIO OncologyErlangenGermany
  4. 4.Imaging & Therapy Systems DivisionSiemens Japan. K. K.ShinagawaJapan

Personalised recommendations