European Radiology

, Volume 24, Issue 5, pp 1013–1019 | Cite as

Assessing liver function by liver enhancement during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MRI at 3 Tesla

  • N. Verloh
  • M. Haimerl
  • F. Zeman
  • M. Schlabeck
  • A. Barreiros
  • M. Loss
  • A. G. Schreyer
  • C. Stroszczynski
  • C. Fellner
  • P. Wiggermann



The purpose of this study was to evaluate the usefulness of Gd-EOB-DTPA-enhanced 3-T MRI to determine the hepatic functional reserve expressed by the model for end-stage liver disease (MELD) score.


A total of 121 patients with normal liver function (NLF; MELD score ≤ 10) and 29 patients with impaired liver function (ILF; MELD score > 10) underwent contrast-enhanced MRI with a hepatocyte-specific contrast agent at 3T. T1-weighted volume interpolated breath-hold examination (VIBE) sequences with fat suppression were acquired before and 20 min after contrast injection. Relative enhancement (RE) between plain signal intensity and contrast-enhanced signal intensity was calculated and was used to determine Gd-EOB-DTPA uptake into the liver parenchyma for patients with different MELD scores.


RE differed significantly (p ≤ 0.001) between patients with NLF (87.2 ± 29.5 %) and patients with ILF (45.4 ± 26.5 %). The optimal cut-off value for RE to differentiate NLF from ILF was 47.7 % (AUC 0.87). This cut-off value showed a sensitivity of 82.8 % and a specificity of 92.7 % for the differentiation of the analysed groups.


Gd-EOB-DTPA uptake in hepatocytes is strongly affected by liver function. Gd-EOB-DTPA-enhanced MRI and assessment of RE during the hepatobiliary phase (HBP) may serve as a useful image-based test in liver imaging for determining regional and global liver function.

Key points

  • Hepatic uptake of Gd-EOB-DTPA is strongly affected by liver function.

  • Relative enhancement during HBP in GD-EOB-DTPA MRI correlates with the MELD score.

  • Assessment of relative enhancement may help improve treatment in routine clinical practice.


Magnetic resonance imaging Gd-EOB-DTPA Abdomen Liver Model for end-stage liver disease (MELD) 

Abbreviations and acronyms


Area under the curve


Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid


Hepatobiliary phase


Impaired liver function


Model for end-stage liver disease


Magnetic resonance imaging


Normal liver function


Relative enhancement


Signal intensity


Volume interpolated breath-hold examination



The scientific guarantor of this publication is PD. Dr. Philipp Wiggermann. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. Mr. Florian Zeman kindly provided statistical advice for this manuscript and is one of the authors of this manuscript. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: prospective, diagnostic or prognostic study, performed at one institution.


  1. 1.
    Kamath PS, Kim WR (2007) The model for end-stage liver disease (MELD). Hepatology 45(3):797–805PubMedCrossRefGoogle Scholar
  2. 2.
    Gupta S, Chawla Y, Kaur J et al (2012) Indocyanine green clearance test (using spectrophotometry) and its correlation with model for end stage liver disease (MELD) score in Indian patients with cirrhosis of liver. Trop Gastroenterol 33(2):129–134PubMedCrossRefGoogle Scholar
  3. 3.
    Tralhao JG, Hoti E, Oliveiros B, Botelho MF, Sousa FC (2012) Study of perioperative liver function by dynamic monitoring of ICG-clearance. Hepatogastroenterology 59(116):1179–1183PubMedGoogle Scholar
  4. 4.
    Cassinotto C, Lapuyade B, Ait-Ali A et al (2013) Liver fibrosis: noninvasive assessment with acoustic radiation force impulse elastography–comparison with FibroScan M and XL probes and FibroTest in patients with chronic liver disease. Radiology. doi: 10.1148/radiol.13122208 PubMedGoogle Scholar
  5. 5.
    Bota S, Sporea I, Sirli R, Popescu A, Danila M, Costachescu D (2012) Intra- and interoperator reproducibility of acoustic radiation force impulse (ARFI) elastography–preliminary results. Ultrasound Med Biol 38(7):1103–1108PubMedCrossRefGoogle Scholar
  6. 6.
    Maharaj B, Maharaj RJ, Leary WP et al (1986) Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet 1(8480):523–525PubMedCrossRefGoogle Scholar
  7. 7.
    Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344(7):495–500PubMedCrossRefGoogle Scholar
  8. 8.
    Wang H, Feng M, Frey KA, Ten Haken RK, Lawrence TS, Cao Y (2013) Predictive models for regional hepatic function based on 99mTc-IDA SPECT and Local radiation dose for physiologic adaptive radiation therapy. Int J Radiat Oncol Biol Phys 86(5):1000–1006PubMedCrossRefGoogle Scholar
  9. 9.
    Verloh N, Haimerl M, Rennert J et al (2013) Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3Tesla. Eur J Radiol 82(10):1710–1715PubMedCrossRefGoogle Scholar
  10. 10.
    Katsube T, Okada M, Kumano S et al (2011) Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol 46(4):277–283PubMedCrossRefGoogle Scholar
  11. 11.
    Tamada T, Ito K, Higaki A et al (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80(3):e311–316PubMedCrossRefGoogle Scholar
  12. 12.
    Tajima T, Takao H, Akai H et al (2010) Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 34(3):362–366PubMedCrossRefGoogle Scholar
  13. 13.
    Motosugi U, Ichikawa T, Sou H et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30(5):1042–1046PubMedCrossRefGoogle Scholar
  14. 14.
    Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J et al (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22(3):642–653PubMedCrossRefGoogle Scholar
  15. 15.
    Chernyak V, Kim J, Rozenblit AM, Mazzoriol F, Ricci Z (2011) Hepatic enhancement during the hepatobiliary phase after gadoxetate disodium administration in patients with chronic liver disease: the role of laboratory factors. J Magn Reson Imaging 34(2):301–309PubMedCrossRefGoogle Scholar
  16. 16.
    van Montfoort JE, Stieger B, Meijer DK, Weinmann HJ, Meier PJ, Fattinger KE (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290(1):153–157PubMedGoogle Scholar
  17. 17.
    Weinmann HJ, Bauer H, Frenzel T, Muhler A, Ebert W (1996) Mechanism of hepatic uptake of gadoxetate disodium. Acad Radiol 3(Suppl 2):S232–234PubMedCrossRefGoogle Scholar
  18. 18.
    Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol 57(2):421–429PubMedCrossRefGoogle Scholar
  19. 19.
    Pascolo L, Cupelli F, Anelli PL et al (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257(3):746–752PubMedCrossRefGoogle Scholar
  20. 20.
    Tsuda N, Okada M, Murakami T (2007) Potential of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for differential diagnosis of nonalcoholic steatohepatitis and fatty liver in rats using magnetic resonance imaging. Invest Radiol 42(4):242–247PubMedCrossRefGoogle Scholar
  21. 21.
    Ryeom HK, Kim SH, Kim JY et al (2004) Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J Radiol 5(4):231–239PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Nishie A, Asayama Y, Ishigami K et al (2012) MR prediction of liver fibrosis using a liver-specific contrast agent: superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 36(3):664–671PubMedCrossRefGoogle Scholar
  23. 23.
    Manizate F, Hiotis SP, Labow D, Roayaie S, Schwartz M (2010) Liver functional reserve estimation: state of the art and relevance to local treatments. Oncology 78(Suppl 1):131–134PubMedCrossRefGoogle Scholar
  24. 24.
    Wiesner R, Edwards E, Freeman R et al (2003) Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124(1):91–96PubMedCrossRefGoogle Scholar
  25. 25.
    Wakabayashi H, Yachida S, Maeba T, Maeta H (2002) Evaluation of liver function for the application of preoperative portal vein embolization on major hepatic resection. Hepatogastroenterology 49(46):1048–1052PubMedGoogle Scholar
  26. 26.
    Cho SH, Kang UR, Kim JD, Han YS, Choi DL (2011) The value of gadoxetate disodium-enhanced MR imaging for predicting posthepatectomy liver failure after major hepatic resection: a preliminary study. Eur J Radiol 80(2):e195–200PubMedCrossRefGoogle Scholar
  27. 27.
    Bluemke DA, Sahani D, Amendola M et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 237(1):89–98PubMedCrossRefGoogle Scholar
  28. 28.
    Kobayashi S, Matsui O, Gabata T et al (2012) Relationship between signal intensity on hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MR imaging and prognosis of borderline lesions of hepatocellular carcinoma. Eur J Radiol 81(11):3002–3009PubMedCrossRefGoogle Scholar
  29. 29.
    Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries H (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med 22(2):233–237, discussion 242PubMedCrossRefGoogle Scholar
  30. 30.
    Hamm B, Staks T, Muhler A et al (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195(3):785–792PubMedGoogle Scholar
  31. 31.
    Muhler A, Heinzelmann I, Weinmann HJ (1994) Elimination of gadolinium-ethoxybenzyl-DTPA in a rat model of severely impaired liver and kidney excretory function. An experimental study in rats. Invest Radiol 29(2):213–216PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi–gadoxetic acid-enhanced MR imaging. Radiology 256(3):767–773PubMedCrossRefGoogle Scholar
  33. 33.
    Tsuboyama T, Onishi H, Kim T et al (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging–correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255(3):824–833PubMedCrossRefGoogle Scholar
  34. 34.
    Popper H (1977) Pathologic aspects of cirrhosis. A review. Am J Pathol 87(1):228–264PubMedCentralPubMedGoogle Scholar
  35. 35.
    Chen BB, Hsu CY, Yu CW et al (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22(1):171–180PubMedCrossRefGoogle Scholar
  36. 36.
    Saito K, Ledsam J, Sourbron S et al (2013) Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention. Eur Radiol. doi: 10.1007/s00330-013-2983-y Google Scholar
  37. 37.
    Geisel D, Ludemann L, Keuchel T et al (2013) Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI. Eur Radiol 23(9):2555–2560PubMedCrossRefGoogle Scholar
  38. 38.
    Planchamp C, Montet X, Frossard JL et al (2005) Magnetic resonance imaging with hepatospecific contrast agents in cirrhotic rat livers. Invest Radiol 40(4):187–194PubMedCrossRefGoogle Scholar
  39. 39.
    Geier A, Kim SK, Gerloff T et al (2002) Hepatobiliary organic anion transporters are differentially regulated in acute toxic liver injury induced by carbon tetrachloride. J Hepatol 37(2):198–205PubMedCrossRefGoogle Scholar
  40. 40.
    Geier A, Dietrich CG, Voigt S et al (2003) Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38(2):345–354PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • N. Verloh
    • 1
  • M. Haimerl
    • 1
  • F. Zeman
    • 2
  • M. Schlabeck
    • 1
  • A. Barreiros
    • 3
  • M. Loss
    • 4
  • A. G. Schreyer
    • 1
  • C. Stroszczynski
    • 1
  • C. Fellner
    • 1
  • P. Wiggermann
    • 1
  1. 1.Department of RadiologyUniversity Hospital RegensburgRegensburgGermany
  2. 2.Center for Clinical TrialsUniversity Hospital RegensburgRegensburgGermany
  3. 3.Department of GastroenterologyUniversity Hospital RegensburgRegensburgGermany
  4. 4.Department of SurgeryUniversity Hospital RegensburgRegensburgGermany

Personalised recommendations