Advertisement

European Radiology

, Volume 24, Issue 4, pp 817–826 | Cite as

Image quality assessment of ultra low-dose chest CT using sinogram-affirmed iterative reconstruction

  • So Won Lee
  • Yookyung KimEmail author
  • Sung Shine Shim
  • Jeong Kyong Lee
  • Seok Jeong Lee
  • Yon Ju Ryu
  • Jung Hyun Chang
Chest

Abstract

Objectives

To assess the image quality of ultra-low-dose computed tomography (ULDCT) using sinogram-affirmed iterative reconstruction (SAFIRE) compared to reduced dose CT (RDCT).

Methods

Eighty-one consecutive patients underwent non-enhanced ULDCT using 80 kVp and 30 mAs and contrast-enhanced RDCT using automated tube potential selection and tube current modulation. CT images were reconstructed with SAFIRE. Image noise and subjective image quality of normal structures and various pulmonary lesions were assessed.

Results

The mean effective doses were 0.29 ± 0.03 and 2.88 ± 1.11 mSv for ULDCT and RDCT, respectively. ULDCT had significantly higher noise (p < 0.001). Image quality of five normal structures was diagnostic in 91.1 % of ULDCT and 100 % of RDCT. With ULDCT, the frequencies of non-diagnostic image quality were 2.0 (1/50), 4.6 (13/280), 25.5 (14/55), and 40.0 (8/20)% for BMIs of < 20, 20–25, 25–30, and >30. In the assessment of pulmonary lesions, non-diagnostic image quality was observed for 11.2 % of all lesions, 60.9 % of decreased attenuation (significantly more frequent for upper lung lesions), and 23.5 % of ground-glass nodules.

Conclusion

ULDCT generates diagnostic images in patients with a BMI ≤25, but is of limited use for lesions with decreased attenuation, ground-glass nodules, or those located in the upper lobe.

Key Points

Iterative reconstruction enables ultra-low-dose CT (ULDCT) with very low radiation doses.

Image quality of ULDCT depends on the patient body mass index (BMI).

Selection of kVp and mAs depends on both BMI and lesion type.

• Diagnosis of pulmonary emphysema or ground-glass nodules requires higher radiation doses.

Keywords

Computed tomography Iterative reconstruction Radiation dose reduction 

Notes

Acknowledgements

The scientific guarantor of this publication is Yookyung Kim. The authors of this manuscript declare no relationships with any companies whose products or services are related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this article. Institutional Review Board approval was obtained. Written informed consent was waived by the Institutional Review Board. Methodology: retrospective, observational, performed at one institution

References

  1. 1.
    Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628. doi: 10.1148/radiol.2303021726 PubMedCrossRefGoogle Scholar
  2. 2.
    Qi W, Li J, Du X (2009) Method for automatic tube current selection for obtaining a consistent image quality and dose optimization in a cardiac multidetector CT. Korean J Radiol 10:568–574. doi: 10.3348/kjr.2009.10.6.568 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Heyer CM, Mohr PS, Lemburg SP, Peters SA, Nicolas V (2007) Image quality and radiation exposure at pulmonary CT angiography with 100- or 120-kVp protocol: Prospective randomized study. Radiology 245:577–583. doi: 10.1148/radiol.2452061919 PubMedCrossRefGoogle Scholar
  4. 4.
    Loeve M, Lequin MH, de Bruijne M et al (2009) Cystic fibrosis: Are volumetric ultra-low-dose expiratory CT scans sufficient for monitoring related lung disease? Radiology 253:223–229. doi: 10.1148/radiol.2532090306 PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang HJ, Seo JB, Lee JS et al (2012) Radiation dose reduction of chest CT with iterative reconstruction in image space - part I: Studies on image quality using dual source CT. Korean J Radiol 13:711–719. doi: 10.3348/kjr.2012.13.6.711 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Baumueller S, Winklehner A, Karlo C et al (2012) Low-dose CT of the lung: Potential value of iterative reconstructions. Eur Radiol 22:2597–2606. doi: 10.1007/s00330-012-2524-0 PubMedCrossRefGoogle Scholar
  7. 7.
    Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: Application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194:191–199. doi: 10.2214/AJR.09.2953 PubMedCrossRefGoogle Scholar
  8. 8.
    Yoo SY, Kim Y, Cho HH et al (2013) Dual-energy CT in the assessment of mediastinal lymph nodes: Comparative study of virtual non-contrast and true non-contrast images. Korean J Radiol 14:532–539. doi: 10.3348/kjr.2013.14.3.532 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    AAPM (2008) AAPM report no. 96: The measurement, reporting, and management of radiation dose in CT. College Park: American Association of Physicists in Medicine.Google Scholar
  10. 10.
    Moscariello A, Takx RA, Schoepf UJ et al (2011) Coronary CT angiography: Image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21:2130–2138. doi: 10.1007/s00330-011-2164-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Hu XH, Ding XF, Wu RZ, Zhang MM (2011) Radiation dose of non-enhanced chest CT can be reduced 40 % by using iterative reconstruction in image space. Clin Radiol 66:1023–1029. doi: 10.1016/j.crad.2011.04.008 PubMedCrossRefGoogle Scholar
  12. 12.
    Mets OM, Willemink MJ, de Kort FP et al (2012) The effect of iterative reconstruction on computed tomography assessment of emphysema, air trapping and airway dimensions. Eur Radiol 22:2103–2109. doi: 10.1007/s00330-012-2489-z PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Prakash P, Kalra MK, Ackman JB et al (2010) Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 256:261–269. doi: 10.1148/radiol.10091487 PubMedCrossRefGoogle Scholar
  14. 14.
    Singh S, Kalra MK, Gilman MD et al (2011) Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: A pilot study. Radiology 259:565–573. doi: 10.1148/radiol.11101450 PubMedCrossRefGoogle Scholar
  15. 15.
    Neroladaki A, Botsikas D, Boudabbous S, Becker CD, Montet X (2013) Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: Preliminary observations. Eur Radiol 23:360–366. doi: 10.1007/s00330-012-2627-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Qi LP, Li Y, Tang L et al (2012) Evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction with the same group of patients. Br J Radiol 85:e906–11. doi: 10.1259/bjr/66327067 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Yamada Y, Jinzaki M, Hosokawa T et al (2012) Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques. Eur J Radiol 81:4185–4195. doi: 10.1016/j.ejrad.2012.07.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Pontana F, Pagniez J, Flohr T et al (2011) Chest computed tomography using iterative reconstruction vs filtered back projection (part 1): Evaluation of image noise reduction in 32 patients. Eur Radiol 21:627–635. doi: 10.1007/s00330-010-1990-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Bankier AA, Schaefer-Prokop C, De Maertelaer V et al (2007) Air trapping: Comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 242:898–906. doi: 10.1148/radiol.2423060196 PubMedCrossRefGoogle Scholar
  20. 20.
    Karabulut N, Toru M, Gelebek V, Gulsun M, Ariyurek OM (2002) Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol 12:2764–2769. doi: 10.1007/s00330-002-1368-4 PubMedGoogle Scholar
  21. 21.
    Weng MJ, Wu MT, Pan HB, Kan YY, Yang CF (2004) The feasibility of low-dose CT for pulmonary metastasis in patients with primary gynecologic malignancy. Clin Imaging 28:408–414. doi: 10.1016/S0899-7071(03)00246-8 PubMedCrossRefGoogle Scholar
  22. 22.
    Baldwin DR, Duffy SW, Wald NJ, Page R, Hansell DM, Field JK (2011) UK lung screen (UKLS) nodule management protocol: Modelling of a single screen randomised controlled trial of low-dose CT screening for lung cancer. Thorax 66:308–313. doi: 10.1136/thx.2010.152066 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    National Lung Screening Trial Research Team, Aberle DR, Berg CD et al (2011) The national lung screening trial: Overview and study design. Radiology 258:243–253. doi: 10.1148/radiol.10091808 PubMedCrossRefGoogle Scholar
  24. 24.
    Gnannt R, Winklehner A, Eberli D, Knuth A, Frauenfelder T, Alkadhi H (2012) Automated tube potential selection for standard chest and abdominal CT in follow-up patients with testicular cancer: Comparison with fixed tube potential. Eur Radiol 22:1937–1945. doi: 10.1007/s00330-012-2453-y PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • So Won Lee
    • 1
  • Yookyung Kim
    • 1
    • 3
    Email author
  • Sung Shine Shim
    • 1
  • Jeong Kyong Lee
    • 1
  • Seok Jeong Lee
    • 2
  • Yon Ju Ryu
    • 2
  • Jung Hyun Chang
    • 2
  1. 1.Department of RadiologySchool of Medicine, Ewha Womans UniversitySeoulSouth Korea
  2. 2.Division of Pulmonology in the Department of Internal MedicineSchool of Medicine, Ewha Womans UniversitySeoulSouth Korea
  3. 3.Department of RadiologyEwha Womans University Mokdong HospitalSeoulKorea

Personalised recommendations