Advertisement

European Radiology

, Volume 24, Issue 4, pp 930–939 | Cite as

Recent developments of dual-energy CT in oncology

  • David Simons
  • Marc Kachelrieß
  • Heinz-Peter Schlemmer
Computed Tomography

Abstract

Dual-energy computed tomography (DECT) can amply contribute to support oncological imaging: the DECT technique offers promising clinical applications in oncological imaging for tumour detection and characterisation while concurrently reducing the radiation dose. Fast image acquisition at two different X-ray energies enables the determination of tissue- or material-specific features, the calculation of virtual unenhanced images and the quantification of contrast medium uptake; thus, tissue can be characterised and subsequently monitored for any changes during treatment. DECT is already widely used, but its potential in the context of oncological imaging has not been fully exploited yet. The technology is the subject of ongoing innovation and increasingly with respect to its clinical potential, particularly in oncology. This review highlights recent state-of-the-art DECT techniques with a strong emphasis on ongoing DECT developments relevant to oncologic imaging, and then focuses on clinical DECT applications, especially its prospective uses in areas of oncological imaging.

Key Points

Dual-energy CT (DECT) offers fast, robust, quantitative and functional whole-body imaging.

DECT provides improved tumour detection and more detailed tissue differentiation and characterisation.

DECT affords therapy monitoring with complementary information and reduced radiation dose.

The use of DECT in oncology is of increasing clinical importance.

The potential of DECT in oncology has not been fully exploited yet.

Keywords

Computed tomography Dual-energy CT Oncology Oncologic imaging Cancer imaging 

Abbreviations

DECT

Dual-energy computed tomography

DSCT

Dual-source computed tomography

FOM

Field of measurement

GIST

Gastrointestinal stromal tumour

HCC

Hepatocellular carcinoma

kV

Kilovoltage

MRI

Magnetic resonance imaging

NSCLC

Non-small cell lung carcinoma

SCC

Squamous cell carcinoma

SPECT

Single-photon emission computed tomography

VNC

Virtual non-contrast

Notes

Acknowledgments

Cooperation with Siemens AG, Germany. This includes a specific collaboration agreement with the aim of a joint collaboration in the field of CT research in oncology as well as consultancies within the Siemens Advisory Board on oncologic imaging.

References

  1. 1.
    Eiber M, Holzapfel K, Frimberger M et al (2012) Targeted dual-energy single-source CT for characterisation of urinary calculi: experimental and clinical experience. Eur Radiol 22:251–258. doi: 10.1007/s00330-011-2231-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171. doi: 10.1016/j.acra.2008.09.004 PubMedCrossRefGoogle Scholar
  3. 3.
    Kachelrieß M (2013) Iterative reconstruction techniques: what do they mean for cardiac CT? Curr Cardiovasc Imaging Rep 6, April 2013Google Scholar
  4. 4.
    Bruder H, Raupach R, Petersilka M, Sunnegårdh J, Stierstorfer K (2011) Bi-modal CT reconstruction (BMR). Proceedings of the 2nd international conference on image formation in X-ray computed tomography, p 107–110Google Scholar
  5. 5.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. doi: 10.1016/j.ejca.2008.10.026 PubMedCrossRefGoogle Scholar
  6. 6.
    Joo I, Lee JM, Kim KW, Klotz E, Han JK, Choi BI (2011) Liver metastases on quantitative color mapping of the arterial enhancement fraction from multiphasic CT scans: evaluation of the hemodynamic features and correlation with the chemotherapy response. Eur J Radiol 80:e278–e283. doi: 10.1016/j.ejrad.2010.12.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Fornaro J, Leschka S, Hibbeln D et al (2011) Dual- and multi-energy CT: approach to functional imaging. Insights Imaging 2:149–159PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Roessl E, Proksa R (2007) K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52:4679–4696PubMedCrossRefGoogle Scholar
  9. 9.
    Kappler S, Hannemann T, Kraft E et al (2012) First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. Proc SPIE 8313:83130X–83131XCrossRefGoogle Scholar
  10. 10.
    Schlomka JP, Roessl E, Dorscheid R et al (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 53:4031–4047. doi: 10.1088/0031-9155/53/15/002 PubMedCrossRefGoogle Scholar
  11. 11.
    Kappler S, Hölzer S, Kraft E, Stierstorfer K, Flohr T (2007) Quantum-counting CT in the regime of count-rate paralysis: introduction of the pile-up trigger method. Proc SPIE 7961:79610T–79611TCrossRefGoogle Scholar
  12. 12.
    Knöss N, Hoffmann B, Krauss B, Heller M, Biederer J (2011) Dual energy computed tomography of lung nodules: differentiation of iodine and calcium in artificial pulmonary nodules in vitro. Eur J Radiol 80:e516–e519. doi: 10.1016/j.ejrad.2010.11.001 PubMedCrossRefGoogle Scholar
  13. 13.
    Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 49:671–681CrossRefGoogle Scholar
  14. 14.
    Schmid-Bindert G, Henzler T, Chu TQ et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22:93–103. doi: 10.1007/s00330-011-2230-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Ogawa M, Hara M, Imafuji A et al (2012) Dual-energy CT can evaluate both hilar and mediastinal lymph nodes and lesion vascularity with a single scan at 60 seconds after contrast medium injection. Acad Radiol 19:1003–1010. doi: 10.1016/j.acra.2012.03.024 PubMedCrossRefGoogle Scholar
  16. 16.
    Imafuji A, Hara M, Sasaki S, Arakawa T, Ozawa Y, Shibamoto Y (2012) Usefulness of dual-energy CT scanning at 80 kVp for identifying hilar and mediastinal structures: evaluation of contrast enhancement of the pulmonary vessels and lymph nodes. Jpn J Radiol 30:69–77. doi: 10.1007/s11604-011-0014-y PubMedCrossRefGoogle Scholar
  17. 17.
    Thieme SF, Graute V, Nikolaou K et al (2012) Dual energy CT lung perfusion imaging–correlation with SPECT/CT. Eur J Radiol 81:360–365. doi: 10.1016/j.ejrad.2010.11.037 PubMedCrossRefGoogle Scholar
  18. 18.
    Ferda J, Ferdová E, Mírka H et al (2011) Pulmonary imaging using dual-energy CT, a role of the assessment of iodine and air distribution. Eur J Radiol 77:287–293. doi: 10.1016/j.ejrad.2009.08.005 PubMedCrossRefGoogle Scholar
  19. 19.
    Pontana F, Faivre JB, Remy-Jardin M et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504. doi: 10.1016/j.acra.2008.05.018 PubMedCrossRefGoogle Scholar
  20. 20.
    Bauer RW, Frellesen C, Renker M et al (2011) Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism - correlation with D-dimer level, right heart strain and clinical outcome. Eur Radiol 21:1914–1921. doi: 10.1007/s00330-011-2135-1 PubMedCrossRefGoogle Scholar
  21. 21.
    Marin D, Nelson RC, Samei E et al (2009) Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology 251:771–779. doi: 10.1148/radiol.2513081330 PubMedCrossRefGoogle Scholar
  22. 22.
    Altenbernd J, Heusner TA, Ringelstein A, Ladd SC, Forsting M, Antoch G (2011) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol 21:738–743. doi: 10.1007/s00330-010-1964-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Hur S, Lee JM, Kim SJ, Park JH, Han JK, Choi BI (2012) 80-kVp CT using iterative reconstruction in image space algorithm for the detection of hypervascular hepatocellular carcinoma: phantom and initial clinical experience. Korean J Radiol 13:152–164. doi: 10.3348/kjr.2012.13.2.152 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Robinson E, Babb J, Chandarana H, Macari M (2010) Dual source dual energy MDCT: comparison of 80 kVp and weighted average 120 kVp data for conspicuity of hypo-vascular liver metastases. Investig Radiol 45:413–418. doi: 10.1097/RLI.0b013e3181dfda78 Google Scholar
  25. 25.
    Yamada Y, Jinzaki M, Tanami Y, Abe T, Kuribayashi S (2012) Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography. Investig Radiol 47:292–298. doi: 10.1097/RLI.0b013e318240a874 CrossRefGoogle Scholar
  26. 26.
    Uhrig M, Sedlmair M, Schlemmer HP, Hassel JC, Ganten M (2013) Monitoring targeted therapy using dual energy CT: semiautomatic RECIST plus supplementary functional information by quantifying iodine uptake of melanoma metastases. Cancer Imaging 13:306–313. doi: 10.1102/1470-7330.2013.0031 PubMedCrossRefGoogle Scholar
  27. 27.
    Dai X, Schlemmer HP, Schmidt B et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82:327–334. doi: 10.1016/j.ejrad.2012.11.013 PubMedCrossRefGoogle Scholar
  28. 28.
    Apfaltrer P, Meyer M, Meier C et al (2012) Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Investig Radiol 47:65–70. doi: 10.1097/RLI.0b013e31823003d2 CrossRefGoogle Scholar
  29. 29.
    Lv P, Lin XZ, Li J, Li W, Chen K (2011) Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method. Radiology 259:720–729. doi: 10.1148/radiol.11101425 PubMedCrossRefGoogle Scholar
  30. 30.
    Marin D, Nelson RC, Barnhart H et al (2010) Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique–preliminary results. Radiology 256:450–459. doi: 10.1148/radiol.10091819 PubMedCrossRefGoogle Scholar
  31. 31.
    Macari M, Spieler B, Kim D et al (2010) Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. AJR Am J Roentgenol 194:W27–W32. doi: 10.2214/AJR.09.2737 PubMedCrossRefGoogle Scholar
  32. 32.
    Delrue L, Blanckaert P, Mertens D, Cesmeli E, Ceelen WP, Duyck P (2011) Assessment of tumor vascularization in pancreatic adenocarcinoma using 128-slice perfusion computed tomography imaging. J Comput Assist Tomogr 35:434–438. doi: 10.1097/RCT.0b013e318223f0c5 PubMedCrossRefGoogle Scholar
  33. 33.
    Chu AJ, Lee JM, Lee YJ, Moon SK, Han JK, Choi BI (2012) Dual-source, dual-energy multidetector CT for the evaluation of pancreatic tumours. Br J Radiol 85:e891–e898. doi: 10.1259/bjr/26129418 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lin XZ, Wu ZY, Tao R et al (2012) Dual energy spectral CT imaging of insulinoma—value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol 81:2487–2494. doi: 10.1016/j.ejrad.2011.10.028 PubMedCrossRefGoogle Scholar
  35. 35.
    Pan Z, Pang L, Ding B et al (2013) Gastric cancer staging with dual energy spectral CT imaging. PLoS One 8:e53651. doi: 10.1371/journal.pone.0053651 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kaza RK, Caoili EM, Cohan RH, Platt JF (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197:1375–1381. doi: 10.2214/AJR.11.6812 PubMedCrossRefGoogle Scholar
  37. 37.
    Graser A, Becker CR, Staehler M et al (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig Radiol 45:399–405. doi: 10.1097/RLI.0b013e3181e33189 Google Scholar
  38. 38.
    Neville AM, Gupta RT, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259:173–183. doi: 10.1148/radiol.10101170 PubMedCrossRefGoogle Scholar
  39. 39.
    Arndt N, Staehler M, Siegert S, Reiser MF, Graser A (2012) Dual energy CT in patients with polycystic kidney disease. Eur Radiol 22:2125–2129. doi: 10.1007/s00330-012-2481-7 PubMedCrossRefGoogle Scholar
  40. 40.
    Leschka S, Stolzmann P, Baumüller S et al (2010) Performance of dual-energy CT with tin filter technology for the discrimination of renal cysts and enhancing masses. Acad Radiol 17:526–534. doi: 10.1016/j.acra.2009.11.007 PubMedCrossRefGoogle Scholar
  41. 41.
    Song KD, Kim CK, Park BK, Kim B (2011) Utility of iodine overlay technique and virtual unenhanced images for the characterization of renal masses by dual-energy CT. AJR Am J Roentgenol 197:W1076–W1082. doi: 10.2214/AJR.11.6922 PubMedCrossRefGoogle Scholar
  42. 42.
    Ascenti G, Mileto A, Krauss B et al (2013) Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol 23:2288–2295. doi: 10.1007/s00330-013-2811-4 PubMedCrossRefGoogle Scholar
  43. 43.
    Chandarana H, Megibow AJ, Cohen BA et al (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196:W693–W700. doi: 10.2214/AJR.10.5541 PubMedCrossRefGoogle Scholar
  44. 44.
    Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440. doi: 10.1148/radiol.2522080557 PubMedCrossRefGoogle Scholar
  45. 45.
    Gupta RT, Ho LM, Marin D, Boll DT, Barnhart HX, Nelson RC (2010) Dual-energy CT for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol 194:1479–1483. doi: 10.2214/AJR.09.3476 PubMedCrossRefGoogle Scholar
  46. 46.
    Gnannt R, Fischer M, Goetti R, Karlo C, Leschka S, Alkadhi H (2012) Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. AJR Am J Roentgenol 198:138–144. doi: 10.2214/AJR.11.6957 PubMedCrossRefGoogle Scholar
  47. 47.
    Ho LM, Marin D, Neville AM et al (2012) Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? AJR Am J Roentgenol 198:840–845. doi: 10.2214/AJR.11.7316 PubMedCrossRefGoogle Scholar
  48. 48.
    Takeuchi M, Kawai T, Ito M et al (2012) Split-bolus CT-urography using dual-energy CT: feasibility, image quality and dose reduction. Eur J Radiol 81:3160–3165. doi: 10.1016/j.ejrad.2012.05.005 PubMedCrossRefGoogle Scholar
  49. 49.
    Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257:205–211. doi: 10.1148/radiol.10091806 PubMedCrossRefGoogle Scholar
  50. 50.
    Kim SJ, Lim HK, Lee HY et al (2012) Dual-energy CT in the evaluation of intracerebral hemorrhage of unknown origin: differentiation between tumor bleeding and pure hemorrhage. AJNR Am J Neuroradiol 33:865–872. doi: 10.3174/ajnr.A2890 PubMedCrossRefGoogle Scholar
  51. 51.
    Schramm N, Schlemmer M, Englhart E et al (2011) Dual energy CT for monitoring targeted therapies in patients with advanced gastrointestinal stromal tumor: initial results. Curr Pharm Biotechnol 12:547–557PubMedCrossRefGoogle Scholar
  52. 52.
    Tawfik AM, Kerl JM, Bauer RW et al (2012) Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Investig Radiol 47:306–311. doi: 10.1097/RLI.0b013e31821e3062 CrossRefGoogle Scholar
  53. 53.
    Kuno H, Onaya H, Iwata R et al (2012) Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT. Radiology 265:488–496. doi: 10.1148/radiol.12111719 PubMedCrossRefGoogle Scholar
  54. 54.
    Li M, Zheng X, Li J et al (2012) Dual-energy computed tomography imaging of thyroid nodule specimens: comparison with pathologic findings. Investig Radiol 47:58–64. doi: 10.1097/RLI.0b013e318229fef3 CrossRefGoogle Scholar
  55. 55.
    Sun C, Miao F, Wang XM et al (2008) An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat 30:443–447. doi: 10.1007/s00276-008-0349-y PubMedCrossRefGoogle Scholar
  56. 56.
    Daigeler A, Lehnhardt M, Khadra A et al (2009) Proximal major limb amputations—a retrospective analysis of 45 oncological cases. World J Surg Oncol 7:15. doi: 10.1186/1477-7819-7-15 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Garbe C, Leiter U (2009) Melanoma epidemiology and trends. Clin Dermatol 27:3–9. doi: 10.1016/j.clindermatol.2008.09.001 PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2014

Authors and Affiliations

  • David Simons
    • 1
  • Marc Kachelrieß
    • 2
  • Heinz-Peter Schlemmer
    • 1
  1. 1.Department of Radiology, German Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of Medical Physics in Radiology, Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations