European Radiology

, Volume 24, Issue 4, pp 857–865 | Cite as

Efficacy of liver parenchymal enhancement and liver volume to standard liver volume ratio on Gd-EOB-DTPA-enhanced MRI for estimation of liver function

  • Tomohide Yoneyama
  • Yoshihiko Fukukura
  • Kiyohisa Kamimura
  • Koji Takumi
  • Aya Umanodan
  • Shinichi Ueno
  • Masayuki Nakajo
Magnetic Resonance

Abstract

Objective

We aimed to develop and assess the efficacy of a liver function index that combines liver enhancement and liver volume to standard liver volume (LV/SLV) ratio on gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI.

Methods

In all, 111 patients underwent a Gd-EOB-DTPA-enhanced MRI, including T1 mapping, before and 20 min after Gd-EOB-DTPA administration. We calculated the following Gd-EOB-DTPA-enhanced MRI-based liver function indices: relative enhancement of the liver, corrected enhancement of the liver-to-spleen ratio, LSC_N20, increase rate of the liver-to-muscle ratio, reduction rate of T1 relaxation time of the liver, ΔR1 of the liver and K Hep; the indices were multiplied by the LV/SLV ratio. We calculated the correlations between an indocyanine green (ICG) clearance and the Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio, by using Pearson correlation analysis.

Results

There were significant correlations between all Gd-EOB-DTPA-enhanced MRI-based liver function indices and ICG clearance (r = −0.354 to −0.574, P < 0.001). All Gd-EOB-DTPA-enhanced MRI-based liver function indices multiplied by the LV/SLV ratio (r = −0.394 to −0.700, P < 0.001) were more strongly correlated with the ICG clearance than those without multiplication by the LV/SLV ratio.

Conclusions

Gd-EOB-DTPA-enhanced MRI-based liver function indices that combine liver enhancement and the LV/SLV ratio may more reliably estimate liver function.

Key points

Gd-EOB-DTPA-enhanced MRI is useful for assessing liver function.

Liver enhancement on Gd-EOB-DTPA-enhanced MRI correlates with indocyanine green (ICG) clearance.

Liver volume to standard liver volume (LV/SLV) ratio correlates with ICG clearance.

Liver enhancement and LV/SLV ratio help to estimate liver function.

Keywords

Gd-EOB-DTPA Magnetic resonance imaging Liver dysfunction Indocyanine green Liver 

Abbreviations and acronyms

BSA

body surface area

CT

computed tomography

Gd-EOB-DTPA

gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid

ICG

indocyanine green

LV

liver volume

LV/SLV

liver volume to standard liver volume

MRI

magnetic resonance imaging

ROI

region-of-interest

VIBE

volumetric interpolated breath-hold examination

References

  1. 1.
    Seyama Y, Kokudo N (2009) Assessment of liver function for safe hepatic resection. Hepatol Res 39:107–116PubMedCrossRefGoogle Scholar
  2. 2.
    Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214PubMedCrossRefGoogle Scholar
  3. 3.
    Roskams T, Desmet V, Verslype C (2006) Development, structure and function of the liver. Churchill Livingstone, Philadelphia, pp 56–61Google Scholar
  4. 4.
    Matsumata T, Kanematsu T, Yoshida Y, Furuta T, Yanaga K, Sugimachi K (1987) The indocyanine green test enables prediction of postoperative complications after hepatic resection. World J Surg 11:678–681PubMedCrossRefGoogle Scholar
  5. 5.
    Lau H, Man K, Fan ST, Yu WC, Lo CM, Wong J (1997) Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. Br J Surg 84:1255–1259PubMedCrossRefGoogle Scholar
  6. 6.
    Ishikawa M, Yogita S, Miyake H et al (2002) Clarification of risk factors for hepatectomy in patients with hepatocellular carcinoma. Hepatogastroenterology 49:1625–1631PubMedGoogle Scholar
  7. 7.
    Weinmann HJ, Schuhmann-Giampieri G, Schmitt-Willich H, Vogler H, Frenzel T, Gries H (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med 22:233–237PubMedCrossRefGoogle Scholar
  8. 8.
    Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183:59–64PubMedGoogle Scholar
  9. 9.
    Hamm B, Staks T, Mühler A et al (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785–792PubMedGoogle Scholar
  10. 10.
    Reimer P, Rummeny EJ, Shamsi K et al (1996) Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology 199:177–183PubMedGoogle Scholar
  11. 11.
    Bluemke DA, Sahani D, Amendola M et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: US multicenter phase III study. Radiology 237:89–98PubMedCrossRefGoogle Scholar
  12. 12.
    Ba-Sslamah A, Uffmann M, Saini S et al (2009) Clinical value of MRI liver-specific contrast agents: a tailored examination for a confident non-invasive diagnosis of focal liver lesions. Eur Radiol 19:342–357CrossRefGoogle Scholar
  13. 13.
    Motosugi U, Ichikawa T, Tominaga L et al (2009) Delay before the hepatocyte phase of Gd-EOB-DTPA-enhanced MR imaging: is it possible to shorten the examination time? Eur Radiol 19:2623–2629PubMedCrossRefGoogle Scholar
  14. 14.
    Kogita S, Imai Y, Okada M et al (2010) Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol 20:2405–2413PubMedCrossRefGoogle Scholar
  15. 15.
    Ichikawa T, Saito K, Yoshioka N et al (2012) Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease. Invest Radiol 45:133–141CrossRefGoogle Scholar
  16. 16.
    Motosugi U, Ichikawa T, Sou H et al (2012) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256:151–158CrossRefGoogle Scholar
  17. 17.
    Kim YK, Kim CS, Han YM, Park G (2010) Detection of small hepatocellular carcinoma: can gadoxetic acid-enhanced magnetic resonance imaging replace combining gadopentetate dimeglumine-enhanced and superparamagnetic iron oxide-enhanced magnetic resonance imaging? Invest Radiol 45:740–746PubMedCrossRefGoogle Scholar
  18. 18.
    Tamada T, Ito K, Higaki A et al (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80:311–316CrossRefGoogle Scholar
  19. 19.
    Katsube T, Okada M, Kumano S et al (2011) Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol 46:277–283PubMedCrossRefGoogle Scholar
  20. 20.
    Saito K, Ledsam J, Sourbron S et al (2013) Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. J Magn Reson Imaging 37:1109–1114PubMedCrossRefGoogle Scholar
  21. 21.
    Motosugi U, Ichikawa T, Sou H et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042–1046PubMedCrossRefGoogle Scholar
  22. 22.
    Utsunomiya T, Shimada M, Hanaoka J et al (2012) Possible utility of MRI using Gd-EOB-DTPA for estimating liver functional reserve. J Gastroenterol 47:470–476PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada A, Hara T, Li F et al (2011) Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology 260:727–733PubMedCrossRefGoogle Scholar
  24. 24.
    Motosugi U, Ichikawa T, Oguri M et al (2011) Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 29:1047–1052PubMedCrossRefGoogle Scholar
  25. 25.
    Watanabe H, Kanematsu M, Goshima S et al (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging-preliminary observations. Radiology 259:142–150PubMedCrossRefGoogle Scholar
  26. 26.
    Goshima S, Kanematsu M, Watanabe H et al (2012) Gd-EOB-DTPA-enhanced MR imaging: prediction of hepatic fibrosis stages using liver contrast enhancement index and liver-to-spleen volumetric ratio. J Magn Reson Imaging 36:1148–1153PubMedCrossRefGoogle Scholar
  27. 27.
    Chen BB, Hsu CY, Yu CW et al (2012) Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol 22:171–180PubMedCrossRefGoogle Scholar
  28. 28.
    Kubota K, Tamura T, Aoyama N et al (2012) Correlation of liver parenchymal gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid enhancement and liver function in humans with hepatocellular carcinoma. Oncol Lett 3:990–994PubMedCentralPubMedGoogle Scholar
  29. 29.
    Norén B, Forsgren MF, Dahlqvist Leinhard O et al (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23:174–181PubMedCrossRefGoogle Scholar
  30. 30.
    Dahlqvist Leinhard O, Dahlström N, Kihlberg J (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642–653PubMedCrossRefGoogle Scholar
  31. 31.
    Nishie A, Ushijima Y, Tajima T et al (2012) Quantitative analysis of liver function using superparamagnetic iron oxide- and Gd-EOB-DTPA-enhanced MRI: comparison with technetium-99m galactosyl serum albumin scintigraphy. Eur J Radiol 81:1100–1104PubMedCrossRefGoogle Scholar
  32. 32.
    Geisel D, Lüdemann L, Keuchel T (2013) Increase in left liver lobe function after preoperative right portal vein embolisation assessed with gadolinium-EOB-DTPA MRI. Eur Radiol 23:2555–2560PubMedCrossRefGoogle Scholar
  33. 33.
    Zhou XP, Lu T, Wei YG et al (2007) Liver volume variation in patients with virus-induced cirrhosis: findings on MDCT. AJR Am J Roentgenol 189:W153–W159PubMedCrossRefGoogle Scholar
  34. 34.
    Tong C, Xu X, Liu C, Zhang T, Qu K (2012) Assessment of liver volume variation to evaluate liver function. Front Med 6:421–427PubMedCrossRefGoogle Scholar
  35. 35.
    Wang HZ, Riederer SJ, Lee JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5:399–416PubMedCrossRefGoogle Scholar
  36. 36.
    Deoni SC (2007) High-resolution T1 mapping of the brain at 3 T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging 26:1106–1111PubMedCrossRefGoogle Scholar
  37. 37.
    Kim KA, Park MS, Kim IS et al (2012) Quantitative evaluation of liver cirrhosis using T1 relaxation time with 3 Tesla MRI before and after oxygen inhalation. J Magn Reson Imaging 36:405–410PubMedCrossRefGoogle Scholar
  38. 38.
    Yoshizumi T, Taketomi A, Kayashima H et al (2008) Estimation of standard liver volume for Japanese adults. Transplant Proc 40:1456–1460PubMedCrossRefGoogle Scholar
  39. 39.
    Ozaki K, Matsui O, Kobayashi S et al (2010) Selective atrophy of the middle hepatic venous drainage area in hepatitis C-related cirrhotic liver: morphometric study by using multidetector CT. Radiology 257:705–714PubMedCrossRefGoogle Scholar
  40. 40.
    Li WX, Zhao XT, Chai WM et al (2010) Hepatitis B virus-induced liver fibrosis and cirrhosis: the value of liver and spleen volumetry with multi-detector spiral computed tomography. J Dig Dis 11:215–223PubMedGoogle Scholar
  41. 41.
    Liu P, Li P, He W et al (2009) Liver and spleen volume variations in patients with hepatic fibrosis. World J Gastroenterol 15:3298–3302PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bonis PA, Friedman SL, Kaplan MM (2001) Is liver fibrosis reversible? N Engl J Med 344:452–454PubMedCrossRefGoogle Scholar
  43. 43.
    Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Treier R, Steingoetter A, Fried M et al (2007) Optimized and combined T1 and B1 mapping technique for fast and accurate T1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57:568–576PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Tomohide Yoneyama
    • 1
  • Yoshihiko Fukukura
    • 1
  • Kiyohisa Kamimura
    • 1
  • Koji Takumi
    • 1
  • Aya Umanodan
    • 1
  • Shinichi Ueno
    • 2
  • Masayuki Nakajo
    • 1
  1. 1.Department of RadiologyKagoshima University Graduate School of Medical and Dental SciencesKagoshima CityJapan
  2. 2.Department of Surgical Oncology and Digestive SurgeryKagoshima University Graduate School of Medical and Dental SciencesKagoshima CityJapan

Personalised recommendations