Advertisement

European Radiology

, Volume 24, Issue 4, pp 889–901 | Cite as

Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT

  • Katrijn Michielsen
  • Ignace Vergote
  • Katya Op de beeck
  • Frederic Amant
  • Karin Leunen
  • Philippe Moerman
  • Christophe Deroose
  • Geert Souverijns
  • Steven Dymarkowski
  • Frederik De Keyzer
  • Vincent VandecaveyeEmail author
Urogenital

Abstract

Objectives

To evaluate whole-body MRI with diffusion-weighted sequence (WB-DWI/MRI) for staging and assessing operability compared with CT and FDG-PET/CT in patients with suspected ovarian cancer.

Methods

Thirty-two patients underwent 3-T WB-DWI/MRI, 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and CT before diagnostic open laparoscopy (DOL). Imaging findings for tumour characterisation, peritoneal and retroperitoneal staging were correlated with histopathology after DOL and/or open surgery. For distant metastases, FDG-PET/CT or image-guided biopsies were the reference standards. For tumour characterisation and peritoneal staging, WB-DWI/MRI was compared with CT and FDG-PET/CT. Interobserver agreement for WB-DWI/MRI was determined.

Results

WB-DWI/MRI showed 94 % accuracy for primary tumour characterisation compared with 88 % for CT and 94 % for FDG-PET/CT. WB-DWI/MRI showed higher accuracy of 91 % for peritoneal staging compared with CT (75 %) and FDG-PET/CT (71 %). WB-DWI/MRI and FDG-PET/CT showed higher accuracy of 87 % for detecting retroperitoneal lymphadenopathies compared with CT (71 %). WB-DWI/MRI showed excellent correlation with FDG-PET/CT (κ = 1.00) for detecting distant metastases compared with CT (κ = 0.34). Interobserver agreement was moderate to almost perfect (κ = 0.58–0.91).

Conclusions

WB-DWI/MRI shows high accuracy for characterising primary tumours, peritoneal and distant staging compared with CT and FDG-PET/CT and may be valuable for assessing operability in ovarian cancer patients.

Key Points

Whole-body MRI with diffusion weighting (WB-DWI/MRI) helps to assess the operability of suspected ovarian cancer.

Interobserver agreement is good for primary tumour characterisation, peritoneal and distant staging.

WB-DWI/MRI improves mesenteric/serosal metastatic spread assessment compared with CT and FDG-PET/CT.

Retroperitoneal/cervical-thoracic nodal staging using qualitative DWI criteria was reasonably accurate.

WB-DWI/MRI and FDG-PET/CT showed the highest diagnostic impact for detecting thoracic metastases.

Keywords

Diffusion-weighted MRI Whole-body imaging Ovarian cancer Tumour staging Gynaecologic surgical procedures 

Abbreviations and acronyms

WB-DWI/MRI

whole-body MRI with diffusion-weighted sequence

DOL

diagnostic open laparoscopy

PC

peritoneal carcinomatosis

FIGO

International Federation of Gynaecology and Obstetrics

NACT

neoadjuvant chemotherapy

CA

cancer antigen

MPR

multiplanar reformatting

TSE

turbo spin-echo

SI

signal intensity

PPV

positive predictive value

NPV

negative predictive value

Notes

Acknowledgments

This research was supported by the Belgian Foundation against Cancer (Stichting Tegen Kanker – Fondation Contre le Cancer).

Supplementary material

330_2013_3083_MOESM1_ESM.docx (37 kb)
Supplementary Table Comparative per-site accuracy for WB-DWI/MRI, CT and FDG-PET/CT (DOCX 36.8 kb)

References

  1. 1.
    Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781PubMedCrossRefGoogle Scholar
  2. 2.
    Vergote I, Tropé CG, Amant F et al (2010) Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med 363:943–953PubMedCrossRefGoogle Scholar
  3. 3.
    Vergote I, De Wever I, Tjalma W, Van Gramberen M, Decloedt J, Van Dam P (1998) Neoadjuvant chemotherapy or primary debulking surgery in advanced ovarian carcinoma: a retrospective analysis of 285 patients. Gynecol Oncol 71:431–436PubMedCrossRefGoogle Scholar
  4. 4.
    Zivanovic O, Eisenhauer EL, Zhou Q et al (2008) The impact of bulky upper abdominal disease cephalad to the greater omentum on surgical outcome for stage IIIC epithelial ovarian, fallopian tube, and primary peritoneal cancer. Gynecol Oncol 108:287–292PubMedCrossRefGoogle Scholar
  5. 5.
    Aletti GD, Dowdy SC, Podratz KC, Cliby WA (2006) Surgical treatment of diaphragm disease correlates with improved survival in optimally debulked advanced stage ovarian cancer. Gynecol Oncol 100:283–287PubMedCrossRefGoogle Scholar
  6. 6.
    Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20:1248–1259PubMedCrossRefGoogle Scholar
  7. 7.
    Chi DS, Eisenhauer EL, Lang J et al (2006) What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol 103:559–564PubMedCrossRefGoogle Scholar
  8. 8.
    Du Bois A, Reuss A, Pujade-Lauraine E, Harter P, Ray-Coquard I, Pfisterer J (2009) Role of surgical outcome as prognostic factor in advanced epithelial ovarian cancer: a combined exploratory analysis of 3 prospectively randomized phase 3 multicenter trials: by the Arbeitsgemeinschaft Gynaekologische Onkologie Studiengruppe Ovarialkarzin. Cancer 115:1234–1244PubMedCrossRefGoogle Scholar
  9. 9.
    Eisenkop SM, Friedman RL, Wang HJ (1998) Complete cytoreductive surgery is feasible and maximizes survival in patients with advanced epithelial ovarian cancer: a prospective study. Gynecol Oncol 69:103–108PubMedCrossRefGoogle Scholar
  10. 10.
    Forstner R, Sala E, Kinkel K, Spencer JA (2010) ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol 20:2773–2780PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar D, Kand P, Basu S (2012) Impact of FDG-PET and -PET/CT imaging in the clinical decision-making of ovarian carcinoma: an evidence-based appraoch. Womens Health 8:191–203Google Scholar
  12. 12.
    Kyriazi S, Kaye SB, deSouza NM (2010) Imaging ovarian cancer and peritoneal metastases–current and emerging techniques. Nat Rev Clin Oncol 7:381–393PubMedCrossRefGoogle Scholar
  13. 13.
    Vergote I, Van Gorp T, Amant F, Leunen K, Neven P, Berteloot P (2008) Timing of debulking surgery in advanced ovarian cancer. Int J Gynecol Cancer 18(Suppl 1):11–19PubMedCrossRefGoogle Scholar
  14. 14.
    Coakley FV, Choi PH, Gougoutas CA et al (2002) Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology 223:495–499PubMedCrossRefGoogle Scholar
  15. 15.
    Pannu HK, Bristow RE, Frederick J, Fishman EK (2003) Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics 23:687–701PubMedCrossRefGoogle Scholar
  16. 16.
    Pannu HK, Horton KM, Fishman EK (2003) Thin section dual-phase multidetector-row computed tomography detection of peritoneal metastases in gynecologic cancers. J Comput Assist Tomogr 27:333–340PubMedCrossRefGoogle Scholar
  17. 17.
    Tempany CM, Zou KH, Silverman SG, Brown DL, Kurtz AB, McNeil BJ (2000) Staging of advanced ovarian cancer: comparison of imaging modalities—report from the Radiological Diagnostic Oncology Group. Radiology 215:761–767PubMedCrossRefGoogle Scholar
  18. 18.
    Low RN, Barone RM (2012) Combined diffusion-weighted and gadolinium-enhanced MRI can accurately predict the peritoneal cancer index preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol 19:1394–1401PubMedCrossRefGoogle Scholar
  19. 19.
    Espada M, Garcia-Flores JR, Jimenez M et al (2013) Diffusion-weighted magnetic resonance imaging evaluation of intra-abdominal sites of implants to predict likelihood of suboptimal cytoreductive surgery in patients with ovarian carcinoma. Eur Radiol 23:2636–2642PubMedCrossRefGoogle Scholar
  20. 20.
    Heintz APM, Odicino F, Maisonneuve P et al (2006) Carcinoma of the ovary. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynaecol Obstet 95(Suppl 1):S161–S192PubMedCrossRefGoogle Scholar
  21. 21.
    Timmerman D, Ameye L, Fischerova D et al (2010) Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. BMJ 341:c6839–c6839PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Vergote I, Du Bois A, Amant F, Heitz F, Leunen K, Harter P (2013) Neoadjuvant chemotherapy in advanced ovarian cancer: On what do we agree and disagree? Gynecol Oncol 128:6–11PubMedCrossRefGoogle Scholar
  23. 23.
    Arrivé L, Coudray C, Azizi L et al (2007) Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography]. [Article in French]. J Radiol 88:1689–1694PubMedCrossRefGoogle Scholar
  24. 24.
    Riordan RD (2004) Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol 77:991–999PubMedCrossRefGoogle Scholar
  25. 25.
    Kolev V, Mironov S, Mironov O et al (2010) Prognostic significance of supradiaphragmatic lymphadenopathy identified on preoperative computed tomography scan in patients undergoing primary cytoreduction for advanced epithelial ovarian cancer. Int J Gynecol Cancer 20:979–984PubMedCrossRefGoogle Scholar
  26. 26.
    Forstner R (2007) Radiological staging of ovarian cancer: imaging findings and contribution of CT and MRI. Eur Radiol 17:3223–3235PubMedCrossRefGoogle Scholar
  27. 27.
    Kitajima K, Murakami K, Yamasaki E et al (2008) Diagnostic accuracy of integrated FDG-PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur J Nucl Med Mol Imaging 35:1912–1920PubMedCrossRefGoogle Scholar
  28. 28.
    Thomassin-Naggara I, Toussaint I, Perrot N et al (2011) Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology 258:793–803PubMedCrossRefGoogle Scholar
  29. 29.
    Ohno Y, Koyama H, Yoshikawa T et al (2011) N stage disease in patients with non-small cell lung cancer: efficacy of quantitative and qualitative assessment with STIR turbo spin-echo imaging, diffusion-weighted MR imaging, and fluorodeoxyglucose PET/CT. Radiology 261:605–615PubMedCrossRefGoogle Scholar
  30. 30.
    Kwee TC, Takahara T, Ochiai R, Nievelstein RAJ, Luijten PR (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Padhani AR, Liu G, Mu-koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125PubMedCentralPubMedGoogle Scholar
  32. 32.
    Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings–a feasibility study. AJR Am J Roentgenol 193:461–470PubMedCrossRefGoogle Scholar
  33. 33.
    Jacquet P, Jelinek JS, Steves MA, Sugarbaker PH (1993) Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer 72:1631–1636PubMedCrossRefGoogle Scholar
  34. 34.
    De Bree E, Koops W, Kröger R, Van Ruth S, Witkamp AJ, Zoetmulder FAN (2004) Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol 86:64–73PubMedCrossRefGoogle Scholar
  35. 35.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu SVCM (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  36. 36.
    Soussan M, Des Guetz G, Barrau V et al (2012) Comparison of FDG-PET/CT and MR with diffusion-weighted imaging for assessing peritoneal carcinomatosis from gastrointestinal malignancy. Eur Radiol 22:1479–1487PubMedCrossRefGoogle Scholar
  37. 37.
    Turlakow A, Yeung HW, Salmon AS, Macapinlac HA, Larson SM (2003) Peritoneal carcinomatosis: role of (18)F-FDG PET. J Nucl Med 44:1407–1412PubMedGoogle Scholar
  38. 38.
    Yoshida Y, Kurokawa T, Kawahara K et al (2004) Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am J Roentgenol 182:227–233PubMedCrossRefGoogle Scholar
  39. 39.
    Dirisamer A, Schima W, Heinisch M et al (2009) Detection of histologically proven peritoneal carcinomatosis with fused 18 F-FDG-PET/MDCT. Eur J Radiol 69:536–541PubMedCrossRefGoogle Scholar
  40. 40.
    Kim HW, Won KS, Zeon SK, Ahn BC, Gayed IW (2013) Peritoneal carcinomatosis in patients with ovarian cancer: enhanced CT versus 18 F-FDG PET/CT. Clin Nucl Med 38:93–97PubMedCrossRefGoogle Scholar
  41. 41.
    Pfannenberg AC, Aschoff P, Brechtel K et al (2007) Value of contrast-enhanced multiphase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 80:437–445PubMedCrossRefGoogle Scholar
  42. 42.
    Satoh Y, Ichikawa T, Motosugi U et al (2011) Diagnosis of peritoneal dissemination: comparison of 18 F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol 196:447–453PubMedCrossRefGoogle Scholar
  43. 43.
    Nakai G, Matsuki M, Inada Y et al (2008) Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr 32:764–768PubMedCrossRefGoogle Scholar
  44. 44.
    Klerkx WM, Heintz APM, Mali WPT et al (2009) Lymph node detection by MRI before and after a systematic pelvic lymphadenectomy. Gynecol Oncol 114:315–318PubMedCrossRefGoogle Scholar
  45. 45.
    Klerkx WM, Mali WM, Heintz AP, De Kort GA, Takahara T, Peeters PH (2011) Observer variation of magnetic resonance imaging and diffusion weighted imaging in pelvic lymph node detection. Eur J Radiol 78:71–74PubMedCrossRefGoogle Scholar
  46. 46.
    Kwee TC, Takahara T, Luijten PR, Nievelstein RAJ (2010) ADC measurements of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 75:215–220PubMedCrossRefGoogle Scholar
  47. 47.
    Ohno Y, Hatabu H, Takenaka D et al (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879PubMedCrossRefGoogle Scholar
  48. 48.
    Low RN (2009) Diffusion-weighted MR imaging for whole body metastatic disease and lymphadenopathy. Magn Reson Imaging Clin N Am 17:245–261PubMedCrossRefGoogle Scholar
  49. 49.
    Hynninen J, Auranen A, Carpén O et al (2012) FDG PET/CT in staging of advanced epithelial ovarian cancer: frequency of supradiaphragmatic lymph node metastasis challenges the traditional pattern of disease spread. Gynecol Oncol 126:64–68PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Katrijn Michielsen
    • 1
  • Ignace Vergote
    • 2
  • Katya Op de beeck
    • 1
  • Frederic Amant
    • 2
  • Karin Leunen
    • 2
  • Philippe Moerman
    • 3
  • Christophe Deroose
    • 4
  • Geert Souverijns
    • 5
  • Steven Dymarkowski
    • 1
  • Frederik De Keyzer
    • 1
  • Vincent Vandecaveye
    • 1
    Email author
  1. 1.Department of Radiology, Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
  2. 2.Department of Obstetrics and Gynaecology, Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Morphology and Molecular PathologyUniversity Hospitals LeuvenLeuvenBelgium
  4. 4.Department of Nuclear Medicine, Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
  5. 5.Department of RadiologyJessa Ziekenhuis – Campus Virga JessaHasseltBelgium

Personalised recommendations