European Radiology

, Volume 24, Issue 4, pp 913–920

Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T

  • K. Pinker
  • W. Bogner
  • P. Baltzer
  • S. Trattnig
  • S. Gruber
  • O. Abeyakoon
  • M. Bernathova
  • O. Zaric
  • P. Dubsky
  • Z. Bago-Horvath
  • M. Weber
  • D. Leithner
  • T. H. Helbich



The objective of our study was to evaluate the clinical application of bilateral high spatial and temporal resolution dynamic contrast-enhanced magnetic resonance imaging (HR DCE-MRI) of the breast at 7 T.


Following institutional review board approval 23 patients with a breast lesion (BIRADS 0, 4–5) were included in our prospective study. All patients underwent bilateral HR DCE-MRI of the breast at 7 T (spatial resolution of 0.7 mm3 voxel size, temporal resolution of 14 s). Two experienced readers (r1, r2) and one less experienced reader (r3) independently assessed lesions according to BI-RADS®. Image quality, lesion conspicuity and artefacts were graded from 1 to 5. Sensitivity, specificity and diagnostic accuracy were assessed using histopathology as the standard of reference.


HR DCE-MRI at 7 T revealed 29 lesions in 23 patients (sensitivity 100 % (19/19); specificity of 90 % (9/10)) resulting in a diagnostic accuracy of 96.6 % (28/29) with an AUC of 0.95. Overall image quality was excellent in the majority of cases (27/29) and examinations were not hampered by artefacts. There was excellent inter-reader agreement for diagnosis and image quality parameters (κ = 0.89–1).


Bilateral HR DCE-MRI of the breast at 7 T is feasible with excellent image quality in clinical practice and allows accurate breast cancer diagnosis.

Key points

• Dynamic contrast-enhanced 7-T MRI is being developed in several centres.

• Bilateral high resolution DCE-MRI of the breast at 7 T is clinically applicable.

• 7-T HR DCE-MRI of the breast provides excellent image quality.

• 7-T HR DCE-MRI should detect breast cancer with high diagnostic accuracy.


7 Tesla Ultra-high field High resolution DCE-MRI Breast cancer 


  1. 1.
    Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46:1296–1316PubMedCrossRefGoogle Scholar
  2. 2.
    Turnbull LW (2009) Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed 22:28–39PubMedCrossRefGoogle Scholar
  3. 3.
    Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30PubMedCrossRefGoogle Scholar
  4. 4.
    Schnall M, Orel S (2006) Breast MR imaging in the diagnostic setting. Magn Reson Imaging Clin N Am 14:329–337, viPubMedCrossRefGoogle Scholar
  5. 5.
    Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378:1804–1811PubMedCrossRefGoogle Scholar
  6. 6.
    DeMartini W, Lehman C (2008) A review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 19:143–150PubMedCrossRefGoogle Scholar
  7. 7.
    Kinkel K, Helbich TH, Esserman LJ et al (2000) Dynamic high-spatial-resolution MR imaging of suspicious breast lesions: diagnostic criteria and interobserver variability. AJR Am J Roentgenol 175:35–43PubMedCrossRefGoogle Scholar
  8. 8.
    Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179:171–178PubMedCrossRefGoogle Scholar
  9. 9.
    Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236:789–800PubMedCrossRefGoogle Scholar
  10. 10.
    Baltzer PA, Benndorf M, Dietzel M, Gajda M, Runnebaum IB, Kaiser WA (2010) False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. AJR Am J Roentgenol 194:1658–1663PubMedCrossRefGoogle Scholar
  11. 11.
    Dietzel M, Baltzer PA, Vag T et al (2010) Differential diagnosis of breast lesions 5 mm or less: is there a role for magnetic resonance imaging? J Comput Assist Tomogr 34:456–464PubMedCrossRefGoogle Scholar
  12. 12.
    Gutierrez RL, DeMartini WB, Eby PR, Kurland BF, Peacock S, Lehman CD (2009) BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement. AJR Am J Roentgenol 193:994–1000PubMedCrossRefGoogle Scholar
  13. 13.
    Pinker K, Grabner G, Bogner W et al (2009) A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results. Invest Radiol 44:553–558PubMedCrossRefGoogle Scholar
  14. 14.
    Pinker-Domenig K, Bogner W, Gruber S et al (2012) High resolution MRI of the breast at 3 T: which BI-RADS(R) descriptors are most strongly associated with the diagnosis of breast cancer? Eur Radiol 22:322–330PubMedCrossRefGoogle Scholar
  15. 15.
    Elsamaloty H, Elzawawi MS, Mohammad S, Herial N (2009) Increasing accuracy of detection of breast cancer with 3-T MRI. AJR Am J Roentgenol 192:1142–1148PubMedCrossRefGoogle Scholar
  16. 16.
    Schmitz AC, Peters NH, Veldhuis WB et al (2008) Contrast-enhanced 3.0-T breast MRI for characterization of breast lesions: increased specificity by using vascular maps. Eur Radiol 18:355–364PubMedCrossRefGoogle Scholar
  17. 17.
    Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: Initial experience. Radiology 239:666–676PubMedCrossRefGoogle Scholar
  18. 18.
    Rahbar H, Partridge SC, DeMartini WB, Thursten B, Lehman CD (2013) Clinical and technical considerations for high quality breast MRI at 3 Tesla. J Magn Reson Imaging 37:778–790PubMedCrossRefGoogle Scholar
  19. 19.
    van de Bank BL, Voogt IJ, Italiaander M et al (2012) Ultra high spatial and temporal resolution breast imaging at 7 T. NMR Biomed. doi:10.1002/nbm.2868 Google Scholar
  20. 20.
    Korteweg MA, Veldhuis WB, Visser F et al (2011) Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Invest Radiol 46:370–376PubMedCrossRefGoogle Scholar
  21. 21.
    Brown R, Storey P, Geppert C et al (2013) Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla. Eur Radiol 23:2969–2978PubMedCrossRefGoogle Scholar
  22. 22.
    Stehouwer BL, Klomp DW, van den Bosch MA et al (2013) Dynamic contrast-enhanced and ultra-high-resolution breast MRI at 7.0 Tesla. Eur Radiol 23:2961–2968PubMedCrossRefGoogle Scholar
  23. 23.
    Wijnen JP, van der Kemp WJ, Luttje MP, Korteweg MA, Luijten PR, Klomp DW (2011) Quantitative (31) P magnetic resonance spectroscopy of the human breast at 7 T. Magn Reson Med 68:339–348PubMedCrossRefGoogle Scholar
  24. 24.
    Klomp DW, van de Bank BL, Raaijmakers A et al (2011) 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer. NMR Biomed 24:1337–1342PubMedCrossRefGoogle Scholar
  25. 25.
    Umutlu L, Maderwald S, Kraff O et al (2010) Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial. Acad Radiol 17:1050–1056PubMedCrossRefGoogle Scholar
  26. 26.
    Stehouwer BL, Klomp DW, Korteweg MA et al (2013) 7 T versus 3 T contrast-enhanced breast magnetic resonance imaging of invasive ductulolobular carcinoma: first clinical experience. Magn Reson Imaging 31:613–617PubMedCrossRefGoogle Scholar
  27. 27.
    Baltzer PA, Dietzel M, Vag T et al (2011) Clinical MR mammography: impact of hormonal status on background enhancement and diagnostic accuracy. RöFo 183:441–447PubMedGoogle Scholar
  28. 28.
    DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD (2012) Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol 198:W373–W380PubMedCrossRefGoogle Scholar
  29. 29.
    Han BK, Schnall MD, Orel SG, Rosen M (2008) Outcome of MRI-guided breast biopsy. AJR Am J Roentgenol 191:1798–1804PubMedCrossRefGoogle Scholar
  30. 30.
    Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD (2008) Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26:386–391PubMedCrossRefGoogle Scholar
  31. 31.
    Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110PubMedCrossRefGoogle Scholar
  32. 32.
    Insko EK, Connick TJ, Schnall MD, Orel SG (1997) Multicoil array for high resolution imaging of the breast. Magn Res Med 37:778–784CrossRefGoogle Scholar
  33. 33.
    Solomon B, Orel S, Reynolds C, Schnall M (1998) Delayed development of enhancement in fat necrosis after breast conservation therapy: a potential pitfall of MR imaging of the breast. AJR Am J Roentgenol 170:966–968PubMedCrossRefGoogle Scholar
  34. 34.
    Schueller G, Jaromi S, Ponhold L et al (2008) US-guided 14-gauge core-needle breast biopsy: results of a validation study in 1352 cases. Radiology 248:406–413PubMedCrossRefGoogle Scholar
  35. 35.
    Degnim AC, King TA (2013) Surgical management of high-risk breast lesions. Surg Clin North Am 93:329–340PubMedCrossRefGoogle Scholar
  36. 36.
    Mann RM, Veltman J, Huisman H, Boetes C (2011) Comparison of enhancement characteristics between invasive lobular carcinoma and invasive ductal carcinoma. J Magn Reson Imaging 34:293–300PubMedCrossRefGoogle Scholar
  37. 37.
    Mann RM, Loo CE, Wobbes T et al (2010) The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat 119:415–422PubMedCrossRefGoogle Scholar
  38. 38.
    Weinstein SP, Orel SG, Heller R et al (2001) MR imaging of the breast in patients with invasive lobular carcinoma. AJR Am J Roentgenol 176:399–406PubMedCrossRefGoogle Scholar
  39. 39.
    Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492PubMedCrossRefGoogle Scholar
  40. 40.
    Lehman CD (2010) Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010:150–151PubMedCrossRefGoogle Scholar
  41. 41.
    Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Baltzer PA, Dietzel M, Kaiser WA (2011) Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy. J Comput Assist Tomogr 35:361–366PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • K. Pinker
    • 1
  • W. Bogner
    • 2
  • P. Baltzer
    • 1
  • S. Trattnig
    • 2
  • S. Gruber
    • 2
  • O. Abeyakoon
    • 3
  • M. Bernathova
    • 1
  • O. Zaric
    • 2
  • P. Dubsky
    • 4
  • Z. Bago-Horvath
    • 5
  • M. Weber
    • 1
  • D. Leithner
    • 1
  • T. H. Helbich
    • 1
  1. 1.Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender ImagingMedical University ViennaViennaAustria
  2. 2.Department of Biomedical Imaging and Image-guided Therapy, MR Centre of ExcellenceMedical University ViennaViennaAustria
  3. 3.Department of RadiologyKing’s CollegeLondonUK
  4. 4.Department of SurgeryMedical University ViennaViennaAustria
  5. 5.Department of PathologyMedical University ViennaViennaAustria

Personalised recommendations