European Radiology

, Volume 24, Issue 2, pp 542–551 | Cite as

Clinical validation of semi-automated software for volumetric and dynamic contrast enhancement analysis of soft tissue venous malformations on Magnetic Resonance Imaging examination

  • Véronique Caty
  • Claude Kauffmann
  • Josée Dubois
  • Asmaa Mansour
  • Marie-France Giroux
  • Vincent Oliva
  • Nicolas Piché
  • Eric Therasse
  • Gilles SoulezEmail author



To evaluate venous malformation (VM) volume and contrast-enhancement analysis on magnetic resonance imaging (MRI) compared with diameter evaluation.


Baseline MRI was undertaken in 44 patients, 20 of whom were followed by MRI after sclerotherapy. All patients underwent short-tau inversion recovery (STIR) acquisitions and dynamic contrast assessment. VM diameters in three orthogonal directions were measured to obtain the largest and mean diameters. Volumetric reconstruction of VM was generated from two orthogonal STIR sequences and fused with acquisitions after contrast medium injection. Reproducibility (interclass correlation coefficients [ICCs]) of diameter and volume measurements was estimated. VM size variations in diameter and volume after sclerotherapy and contrast enhancement before sclerotherapy were compared in patients with clinical success or failure.


Inter-observer ICCs were similar for diameter and volume measurements at baseline and follow-up (range 0.87–0.99). Higher percentages of size reduction after sclerotherapy were observed with volume (32.6 ± 30.7 %) than with diameter measurements (14.4 ± 21.4 %; P = 0.037). Contrast enhancement values were estimated at 65.3 ± 27.5 % and 84 ± 13 % in patients with clinical failure and success respectively (P = 0.056).


Venous malformation volume was as reproducible as diameter measurement and more sensitive in detecting therapeutic responses. Patients with better clinical outcome tend to have stronger malformation enhancement.

Key points

Magnetic resonance imaging readily demonstrates diameters and volumes of venous malformations

MRI diameter calculations are reproducible in estimating the size of venous malformations

But volumetric models of malformations are more sensitive in detecting therapeutic response

Dynamic enhancement is also better assessed with automated volumetric software

Volumetric analysis of malformations offers promise to guide therapy and assess response


Venous malformation MRI Sclerotherapy Volumetric analysis Image segmentation 



This work was supported by a clinical research scholarship (to G.S.) from Fonds de la recherche en santé du Québec (FRSQ). Nicolas Piché is an employee of Object Research System.


  1. 1.
    Dubois J, Soulez G, Oliva VL, Berthiaume MJ, Lapierre C, Therasse E (2001) Soft-tissue venous malformations in adult patients: imaging and therapeutic issues. Radiographics 21:1519–1531PubMedCrossRefGoogle Scholar
  2. 2.
    Rak KM, Yakes WF, Ray RL et al (1992) MR imaging of symptomatic peripheral vascular malformations. AJR Am J Roentgenol 159:107–112PubMedCrossRefGoogle Scholar
  3. 3.
    Trop I, Dubois J, Guibaud L et al (1999) Soft-tissue venous malformations in pediatric and young adult patients: diagnosis with Doppler US. Radiology 212:841–845PubMedCrossRefGoogle Scholar
  4. 4.
    Paltiel HJ, Burrows PE, Kozakewich HP, Zurakowski D, Mulliken JB (2000) Soft-tissue vascular anomalies: utility of US for diagnosis. Radiology 214:747–754PubMedCrossRefGoogle Scholar
  5. 5.
    Blum L, Gallas S, Cottier JP, Sonier Vinikoff CB, Lorette G, Herbreteau D (2004) Percutaneous sclerotherapy for the treatment of soft-tissue venous malformations: a retrospective study of 68 patients. J Radiol 85:107–116PubMedCrossRefGoogle Scholar
  6. 6.
    Jin Y, Lin X, Li W, Hu X, Ma G, Wang W (2008) Sclerotherapy after embolization of draining vein: a safe treatment method for venous malformations. J Vasc Surg 47:1292–1299PubMedCrossRefGoogle Scholar
  7. 7.
    Rautio R, Laranne J, Kahara V, Saarinen J, Keski-Nisula L (2004) Long-term results and quality of life after endovascular treatment of venous malformations in the face and neck. Acta Radiol 45:738–745PubMedCrossRefGoogle Scholar
  8. 8.
    Goyal M, Causer PA, Armstrong D (2002) Venous vascular malformations in pediatric patients: comparison of results of alcohol sclerotherapy with proposed MR imaging classification. Radiology 223:639–644PubMedCrossRefGoogle Scholar
  9. 9.
    Tan KT, Kirby J, Rajan DK, Hayeems E, Beecroft JR, Simons ME (2007) Percutaneous sodium tetradecyl sulfate sclerotherapy for peripheral venous vascular malformations: a single-center experience. J Vasc Interv Radiol 18:343–351PubMedCrossRefGoogle Scholar
  10. 10.
    Flors L, Leiva-Salinas C, Maged IM et al (2011) MR imaging of soft-tissue vascular malformations: diagnosis, classification, and therapy follow-up. Radiographics 31:1321–1340, discussion 1340-1321PubMedCrossRefGoogle Scholar
  11. 11.
    Soulez G, Dubois J, Oliva VI (2009) Soft tissue vascular malformation. In: Hallet JW, Mills J, Earnshaw JJ, Reekers JA, Rooke TW (eds) Comprehensive vascular and endovascular surgery, 2nd edn. Mosby Elsevier, Philadelphia, pp 842–861CrossRefGoogle Scholar
  12. 12.
    Yakes WF, Pevsner P, Reed M, Donohue HJ, Ghaed N (1989) Symptomatic vascular malformations: Ethanol embolotherapy. Radiology 170:1059–1066PubMedGoogle Scholar
  13. 13.
    Suh JSSK, Na JB, Won JY, Hahn SB (1997) Venous malformations: sclerotherapy with a mixture of ethanol and lipiodol. Cardiovasc Intervent Radiol 20:268–273PubMedCrossRefGoogle Scholar
  14. 14.
    O’Donovan JC, Donaldson JS, Morello FP, Pensler JM, Vogelzang RL, Bauer B (1997) Symptomatic hemangiomas and venous malformations in infants, children, and young adults: treatment with percutaneous injection of sodium tetradecyl sulfate. AJR Am J Roentgenol 169:723–729PubMedCrossRefGoogle Scholar
  15. 15.
    Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214PubMedCrossRefGoogle Scholar
  16. 16.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  17. 17.
    Mayr NA, Taoka T, Yuh WT et al (2000) Comparison of local control and survival prediction with quantitative 3-D tumor volumetry vs. simple diameter measurement by magnetic resonance imaging in cervical cancer. Int J Radiation Oncol Biol Phys 48(1):210CrossRefGoogle Scholar
  18. 18.
    Kopp C, Theodorou M, Poullos N et al (2012) Tumor shrinkage assessed by volumetric MRI in long-term follow-up after fractionated stereotactic radiotherapy of nonfunctioning pituitary adenoma. Int J Radiat Oncol, Biol, Phys 82:1262–1267CrossRefGoogle Scholar
  19. 19.
    Lorenzon MZC, Londero V, Linda A, Furlan A, Bazzocchi M (2009) Assessment of breast cancer response to neoadjuvant chemotherapy: Is volumetric MRI a reliable tool? Eur J Radiol 71:82–88PubMedCrossRefGoogle Scholar
  20. 20.
    Akazawa K, Tamaki Y, Taguchi T et al (2008) Potential of reduction in total tumor volume measured with 3D-MRI as a prognostic factor for locally-advanced breast cancer patients treated with primary chemotherapy. Breast J 14:523–531PubMedCrossRefGoogle Scholar
  21. 21.
    Hwang SWAM, Antoniou AJ, Adel M, Malek MA, Heilman CB (2010) Postoperative temporalis muscle atrophy and the use of electrocautery: a volumetric MRI comparison. Skull Base 20:321–326PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Boll DT, Merkle EM, Lewin JS (2004) Low-flow vascular malformations: MR-guided percutaneous sclerotherapy in qualitative and quantitative assessment of therapy and outcome. Radiology 233:376–384PubMedCrossRefGoogle Scholar
  23. 23.
    Choi YH, Han MH, O-Ki K, Cha SH, Chang KH (2002) Craniofacial cavernous venous malformations: percutaneous sclerotherapy with use of ethanolamine oleate. J Vasc Interv Radiol 13:475–482PubMedCrossRefGoogle Scholar
  24. 24.
    Wimmershoff MB, Schreyer AG, Glaessl A et al (2000) Mixed capillary/lymphatic malformation with coexisting port-wine stain: treatment utilizing 3D MRI and CT-guided sclerotherapy. Dermatol Surg 26:584–587PubMedCrossRefGoogle Scholar
  25. 25.
    Dubois JAM (2010) Vascular anomalies: what a radiologist needs to know. Pediatric Radiology 40:895–905PubMedCrossRefGoogle Scholar
  26. 26.
    van Rijswijk CS, van der Linden E, van der Woude HJ, van Baalen JM, Bloem JL (2002) Value of Dynamic contrast-enhanced MR imaging in diagnosing and classifying peripheral vascular malformations. AJR Am J Roentgenol 178:1181–1187PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Véronique Caty
    • 1
  • Claude Kauffmann
    • 2
  • Josée Dubois
    • 3
  • Asmaa Mansour
    • 4
  • Marie-France Giroux
    • 2
  • Vincent Oliva
    • 2
  • Nicolas Piché
    • 5
  • Eric Therasse
    • 2
  • Gilles Soulez
    • 2
    • 6
    Email author
  1. 1.Department of RadiologyHôpital Maisonneuve-Rosemont, Université de MontréalMontrealCanada
  2. 2.Department of RadiologyCentre hospitalier de l’Université de Montréal (CHUM), Université de Montréal and Research Centre, CHUM (CRCHUM)MontrealCanada
  3. 3.Department of RadiologyCentre hospitalier universitaire Sainte-Justine and Université de MontréalMontrealCanada
  4. 4.Heart Institute Coordinating CentreInstitut de cardiologie de MontréalMontrealCanada
  5. 5.Object Research SystemMontrealCanada
  6. 6.Department of RadiologyCHUM – Hôpital Notre-DameMontrealCanada

Personalised recommendations