Advertisement

European Radiology

, Volume 24, Issue 3, pp 693–702 | Cite as

Using R2* values to evaluate brain tumours on magnetic resonance imaging: Preliminary results

  • Zhenghua LiuEmail author
  • Haibo Liao
  • Jianhua Yin
  • Yanfang Li
Magnetic Resonance

Abstract

Objective

To determine the usefulness of the R2* value in assessing the histopathological grade of glioma at magnetic resonance imaging and differentiating various brain tumours.

Methods

Sixty-four patients with brain tumours underwent R2* mapping and diffusion-weighted imaging examinations. ANOVA was performed to analyse R2* values among four groups of glioma and among high-grade gliomas (grades III and IV), low-grade gliomas (grades I and II), meningiomas, and brain metastasis. Spearman’s correlation coefficients were used to determine the relationships between the R2* values or apparent diffusion coefficient (ADC) and the histopathological grade of gliomas. R2* values of low- and high-grade gliomas were analysed with the receiver-operator characteristic curve.

Results

R2* values were significantly different among high-grade gliomas, low-grade gliomas, meningiomas, and brain metastasis, but not between grade I and grade II or between grade III and grade IV. The R2* value (18.73) of high-grade gliomas provided a very high sensitivity and specificity for differentiating low-grade gliomas. A strong correlation existed between the R2* value and the pathological grade of gliomas.

Conclusions

R2* mapping is a useful sequence for determining grade of gliomas and in distinguishing benign from malignant tumours. R2* values are better than ADC for characterising gliomas.

Key Points

Magnetic resonance imaging parameters are increasingly used to assess cerebral lesions.

R2* values are better than diffusion weighting for characterising gliomas.

R2* values can help distinguish among different grades of glioma.

Significant difference existed in R2* values between high- and low-grade gliomas.

Keywords

R2* values Glioma ASL DWI Metastasis 

References

  1. 1.
    Davis FG, Malmer BS, Aldape K et al (2008) Issues of diagnostic review in brain tumor studies: From the Brain Tumor Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev 17:484–489PubMedCrossRefGoogle Scholar
  2. 2.
    Drevelegas A (2005) Extra-axial brain tumors. Eur Radiol 15:453–467PubMedCrossRefGoogle Scholar
  3. 3.
    Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Schiff D, Brown PD, Giannini C (2007) Outcome in adult low-grade glioma: the impact of prognostic factors and treatment. Neurology 69:1366–1373PubMedCrossRefGoogle Scholar
  5. 5.
    Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24:1273–1280PubMedCrossRefGoogle Scholar
  6. 6.
    Akiba T, Kunieda E, Kogawa A, Komatsu T, Tamai Y, Ohizumi Y (2012) Re-irradiation for metastatic brain tumors with whole-brain radiotherapy. Jpn J Clin Oncol 42:264–269PubMedCrossRefGoogle Scholar
  7. 7.
    Watts JM, Whitlow CT, Maldjian JA (2013) Clinical applications of arterial spin labeling. NMR Biomed 26:892–900PubMedCrossRefGoogle Scholar
  8. 8.
    Lanzman RS, Robson PM, Sun MR et al (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265:799–808PubMedCrossRefGoogle Scholar
  9. 9.
    Murakami R, Hirai T, Sugahara T et al (2009) Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 251:838–845PubMedCrossRefGoogle Scholar
  10. 10.
    Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846PubMedCrossRefGoogle Scholar
  11. 11.
    Noguchi T, Yoshiura T, Hiwatashi A et al (2008) Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR 29:688–693PubMedCrossRefGoogle Scholar
  12. 12.
    Christen T, Bolar DS, Zaharchuk G (2013) Imaging brain oxygenation with MRI using blood oxygenation approaches: methods, validation, and clinical applications. AJNR 34:1113–1123PubMedCrossRefGoogle Scholar
  13. 13.
    Bagley LJ, Grossman RI, Judy KD et al (1997) Gliomas: correlation of magnetic susceptibility artifact with histologic grade. Radiology 202:511–516PubMedGoogle Scholar
  14. 14.
    Barth M, Nöbauer-Huhmann IM, Reichenbach JR et al (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414PubMedGoogle Scholar
  15. 15.
    Punwani S, Ordidge RJ, Cooper CE, Amess P, Clemence M (1998) MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]–correlation with near infrared spectroscopy (NIRS). NMR Biomed 11:281–289PubMedCrossRefGoogle Scholar
  16. 16.
    Losert C, Peller M, Schneider P, Reiser M (2002) Oxygen-enhanced MRI of the brain. Magn Reson Med 48:271–277PubMedCrossRefGoogle Scholar
  17. 17.
    Alonzi R, Padhani AR, Taylor NJ et al (2011) Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 80:721–727PubMedCrossRefGoogle Scholar
  18. 18.
    McPhail LD, Robinson SP (2010) Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 254:110–118PubMedCrossRefGoogle Scholar
  19. 19.
    Rodrigues LM, Howe FA, Griffiths JR, Robinson SP (2004) Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging 19:482–488PubMedCrossRefGoogle Scholar
  20. 20.
    Müller A, Remmele S, Wenningmann I et al (2011) Analysing the response in R2* relaxation rate of intracranial tumours to hyperoxic and hypercapnic respiratory challenges: initial results. Eur Radiol 21:786–798PubMedCrossRefGoogle Scholar
  21. 21.
    Kuperman VY, River JN (1995) Changes in T2* weighted images during hyperoxia diffentiate tumors from normal tissue. MRM 33:318–325CrossRefGoogle Scholar
  22. 22.
    Saitta L, Heese O, Förster AF et al (2011) Signal intensity in T2' magnetic resonance imaging is related to brain glioma grade. Eur Radiol 21:1068–1076PubMedCrossRefGoogle Scholar
  23. 23.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  24. 24.
    Dunn JF, O’Hara JA, Zaim-Wadghiri Y et al (2002) Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry study. J Magn Reson Imaging 16:511–521PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao D, Jiang L, Hahn EW, Mason RP (2009) Comparison of 1H blood oxygen level-dependent (BOLD) and 19FMRIto investigate tumor oxygenation. Magn ResonMed 62:357–364CrossRefGoogle Scholar
  26. 26.
    Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility weighted contrast-enhanced MR imaging. Radiology 228:523–532PubMedCrossRefGoogle Scholar
  27. 27.
    Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR 179:783–789PubMedCrossRefGoogle Scholar
  28. 28.
    Hernando D, Vigen KK, Shimakawa A et al (2012) R2* mapping in the presence of macroscopic B0 field variations. Magn Reson Med 68:830–840PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    De Guio F, Benoit-Cattin H, Davenel A (2008) Signal decay due to susceptibility-induced intravoxel dephasing on multiple air-filled cylinders: MRI simulations and experiments. MAGMA 21:261–271PubMedCrossRefGoogle Scholar
  30. 30.
    Fernández-Seara MA, Wehrli FW (2000) Postprocessing technique to correct for background gradients in image-based R2* measurements. Magn Reson Med 44:358–366PubMedCrossRefGoogle Scholar
  31. 31.
    Volz S, Hattingen E, Preibisch C et al (2009) Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus. Neuroimage 45:1135–1143PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Zhenghua Liu
    • 1
    Email author
  • Haibo Liao
    • 1
  • Jianhua Yin
    • 1
  • Yanfang Li
    • 2
  1. 1.The Department of Magnetic Resonance Imaging, Medical Image Centerthe Second Affiliated Hospital of Nanchang UniversityNanchangChina
  2. 2.The Department of Preventive MedicineHeze Medical CollegeShandongChina

Personalised recommendations