Advertisement

European Radiology

, Volume 24, Issue 2, pp 469–483 | Cite as

Adult exposures from MDCT including multiphase studies: first Italian nationwide survey

  • Federica Palorini
  • Daniela Origgi
  • Claudio Granata
  • Domenica Matranga
  • Sergio SalernoEmail author
Computed Tomography

Abstract

Objectives

To evaluate the radiation dose in routine multidetector computed tomography (MDCT) examinations in Italian population.

Methods

This was a retrospective multicentre study included 5,668 patients from 65 radiology departments who had undergone common CT protocols: head, chest, abdomen, chest–abdomen–pelvis (CAP), spine and cardiac. Data included patient characteristics, CT parameters, volumetric CT dose index (CTDIvol) and dose length product (DLP) for each CT acquisition phase. Descriptive statistics were calculated, and a multi-regression analysis was used to outline the main factors affecting exposure.

Results

The 75th percentiles of CTDIvol (mGy) and DLP (mGy cm) for whole head were 69 mGy and 1,312 mGy cm, respectively; for chest, 15 mGy and 569 mGy cm; spine, 42 mGy and 888 mGy cm; cardiac, 7 mGy and 131 mGy cm for calcium score, and 61 mGy and 1,208 mGy cm for angiographic CT studies. High variability was present in the DLP of abdomen and CAP protocols, where multiphase examinations dominated (71 % and 73 % respectively): for abdomen, 18 mGy, with 555 and 920 mGy cm in abdomen and abdomen–pelvis acquisitions respectively; for CAP, 17 mGy, with 508, 850 and 1,200 mGy cm in abdomen, abdomen–pelvis and CAP acquisitions respectively.

Conclusion

The results of this survey could help in the definition of updated diagnostic reference levels (DRL).

Key Points

Radiation dose associated with multidetector CT (MDCT) is an important health issue.

This national survey assessed dose exposures of 5,668 patients undergoing MDCT.

Dose indices correlate with BMI, voltage, rotation time, pitch and tube current.

These results may contribute to an update of national diagnostic reference levels.

Keywords

Nationwide survey Radiation protection Multidetector CT Patient dose Diagnostic reference levels 

Abbreviations and Acronyms

AIFM

Italian Society of Medical Physics

BMI

body mass index

CAP

chest–abdomen–pelvis

CI

confidence interval

CTDIvol

volumetric computed tomography dose index

DLP

dose length product

DRL

diagnostic reference levels

ECTCM

electrocardiographically controlled tube current modulation

FOV

field of view

GEE

generalized estimating equations

MDCT

multidetector computed tomography

MV

mean value

RIS

radiology information system

SD

standard deviation

SIRM

Italian Society of Radiology

Notes

Acknowledgments

We are pleased to acknowledge the collaboration of numerous radiologist colleagues and medical physicists (listed in the Appendix) that has allowed the achievement of this large-scale data collection. We are also grateful to the Italian Society of Radiology (SIRM) who financed and supported the study, and to the Italian Society of Medical Physics (AIFM), for its active collaboration.

References

  1. 1.
    European Commission (1999) European guidelines on quality criteria for computed tomography. EUR 16262 EN. Luxembourg, Office for Official Publications of the European CommunitiesGoogle Scholar
  2. 2.
    Bongartz G, Golding SJ, JuriK AG, Leonardi M et al (2008) Quality criteria for multislice computed tomography. Results from a European concerned action on CT (FIGM-CT-2000-2008) Appendix B: European field survey on MDCT 2004. http://MDCT.eu/CT_Quality_Criteria.htm. Accessed 1 Jan 2013
  3. 3.
    Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  4. 4.
    Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169:2071–2077PubMedCrossRefGoogle Scholar
  5. 5.
    Marin D, Nelson RC, Schindera ST et al (2010) Low-tubevoltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm–initial clinical experience. Radiology 254:145–153PubMedCrossRefGoogle Scholar
  6. 6.
    Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657PubMedCrossRefGoogle Scholar
  7. 7.
    McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:655CrossRefGoogle Scholar
  8. 8.
    Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188:547–552PubMedCrossRefGoogle Scholar
  9. 9.
    Kalra MK, Maher MM, Toth TL et al (2004) Strategies for CT radiation dose optimization. Radiology 230:619–628PubMedCrossRefGoogle Scholar
  10. 10.
    Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. BJR 81:362–378PubMedCrossRefGoogle Scholar
  11. 11.
    Hendee WR, O’Connor MK (2012) Radiation risks of medical imaging: separating fact from fantasy. Radiology 264:312–321PubMedCrossRefGoogle Scholar
  12. 12.
    Decreto Legislativo 26 maggio 2000, n. 187. Gazzetta Ufficiale n. 157 del 7 luglio 2000Google Scholar
  13. 13.
    Origgi D, Vigorito S, Villa G, Bellomi M, Tosi G (2006) Survey of computed tomography techniques and absorbed dose in Italian hospitals: a comparison between two methods to estimate the dose-length product and the effective dose and verify fulfillment of the diagnostic reference levels. Eur Radiol 16:227–237PubMedCrossRefGoogle Scholar
  14. 14.
    Catuzzo P, Aimonetto S, Zenone F, Fanelli G, Marchisio P, Meloni T, Pasquino M, Tofani S (2010) Population exposure to ionizing radiation from CT examinations in Aosta Valley between 2001-2008. BJR 83:1042–1051PubMedCrossRefGoogle Scholar
  15. 15.
    Compagnone G, Angelini P, Doenichelli S (2012) Radiation doses to the population of the Emilia-Romagna region from medical exposures. Radiol Med 117:312–332PubMedCrossRefGoogle Scholar
  16. 16.
    Shrimpton PC, Hiller MC, Lewis MA, Dunn M (2006) National survey of doses from CT in the UK: 2003. BJR 79:968–980PubMedCrossRefGoogle Scholar
  17. 17.
    Brix G, Nagel HD, Stamm G, Veit R, Lechel U, Gribel J, Galanski M (2003) Radiation exposure in multi-slice versus single slice spiral CT: results of a nationwide survey. Eur Radiol 13:1979–1991PubMedCrossRefGoogle Scholar
  18. 18.
    Verdun FR, Gutierrez D, Vader JP, Aroua A et al (2008) CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol 18:1980–1986PubMedCrossRefGoogle Scholar
  19. 19.
    Galanski M, Nagel HD, Stamm NG (2006) Paediatric CT exposure practise in the Federal Republic of Germany. Result of a nation-wide survey in 2005-2006. Medizinische Hochschule Hannover. http://www.mhhannover.de/fileadmin/kliniken/diagnostische_radiologie/download/Report_German_Paed-CT-Survey_2005_06.pdf. Accessed 1 Jan 2013
  20. 20.
    Bernier MO, Rehel JL, Brisse HJ, Wu-Zhou X et al (2012) Radiation exposure from CT in early childhood: a French large scale multicentre study. Br J Radiol 85:53–60PubMedCrossRefGoogle Scholar
  21. 21.
    Foley SJ, McEntee MF, Rainford LA (2012) Establishment of CT diagnostic reference levels in Ireland. BJR 85:1390–1397PubMedCrossRefGoogle Scholar
  22. 22.
    Zarb F, McEntee M, Rainford L (2012) Maltese CT doses from commonly performed examinations demonstrate alignment with published DRLs across Europe. Radiat Prot Dosim 150:198–206CrossRefGoogle Scholar
  23. 23.
    Treier R, Aroua A, Verdun FR, Samara E, Stuessi A, Trueb PR (2010) Patient doses in CT examinations in Switzerland: implementation of national diagnostic reference levels. Radiat Prot Dosim 142:244–254CrossRefGoogle Scholar
  24. 24.
    McCollough CH, Branham T, Herlihy V, Bhargavan M, Robinn L et al (2011) Diagnostic reference levels from the ACR CT accreditation program. J Am Coll Radiol 8:795–803PubMedCrossRefGoogle Scholar
  25. 25.
    Roch P, Aubert B (2012) French diagnostic reference levels in diagnostic radiology, computed tomography and nuclear medicine. Radiat Prot Dosim 1–24Google Scholar
  26. 26.
    Veit R, Guggenberger R, Noßke D, Brix G (2010) Diagnostische Referenzwerte für Röntgenuntersuchungen Radiologe 50:907–912Google Scholar
  27. 27.
    SIRM SAGO (2010) Censimento Nazionale delle risorse umane e tecnologiche dell’area radiologica. Il Ragiologo Suppl 2:3–39Google Scholar
  28. 28.
    IMV (2007) Benchmark report CT 2007. IMV Medical Information Division, Illinois USGoogle Scholar
  29. 29.
    Liang K, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  30. 30.
    Zeger S, Liang K (1992) An overview of methods for the analysis of longitudinal data. Stat Med 11:1825–1839PubMedCrossRefGoogle Scholar
  31. 31.
    Istat (2011) Indagine annuale "Aspetti della vita quotidiana" 2011. www.istat.it. Accessed 1 Jan 2013
  32. 32.
    International Commission on Radiological Protection (2008) 2007 recommendations of the International Commission on Radiological. Annals of the ICRP, ICRP Publication 103. Pergamon, OxfordGoogle Scholar
  33. 33.
    Andoh H, McNulty NJ, Lewis PJ (2013) Improving accuracy in reporting CT scans of oncology patients: assessing the effect of education and feedback interventions on the application of the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Acad Radiol 20:351–357. doi: 10.1016/j.acra.2012.12.002 PubMedCrossRefGoogle Scholar
  34. 34.
    Perez-Johnston R, Lenhart DK, Sahani DV (2010) CT angiography of the hepatic and pancreatic circulation. Radiol Clin N Am 48:311–330. doi: 10.1016/j.rcl.2010.02.021, viiiPubMedCrossRefGoogle Scholar
  35. 35.
    Frost & Sullivan (2012) Analysis of the US medical computed tomography (CT) imaging system market. www.healthcare.frost.com. Accessed 1 Jan 2013
  36. 36.
    DDM2 (2011) www.ddmed.eu. Accessed 1 Jan 2013
  37. 37.
    Pantos I, Thalassinou S, Argentos S, Kelekis NL, Panayiotakis G, Efstathopoulos (2011) Adult patient radiation doses from non-cardiac CT examinations: a review of published results. Br J Radiol 84:293–303PubMedCrossRefGoogle Scholar
  38. 38.
    Schilham A, van der Molen AJ, Prokop M, de Jong HW (2010) Overranging at multisection CT: an underestimated source of excess radiation exposure. Radiographics 30:1057–1067PubMedCrossRefGoogle Scholar
  39. 39.
    Hausleiter J, Meyer T, Hermann F, Krebs M et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507PubMedCrossRefGoogle Scholar
  40. 40.
    Wood TJ, Davis AW, Moore CS, Beavis AW, Saunderson JR (2012) Validation of a large scale audit technique for CT dose optimization. Radiat Prot Dosim 150:427–433CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Federica Palorini
    • 1
  • Daniela Origgi
    • 1
  • Claudio Granata
    • 2
  • Domenica Matranga
    • 3
  • Sergio Salerno
    • 4
    Email author
  1. 1.Fisica Sanitaria Istituto Europeo di OncologiaMilanItaly
  2. 2.UOC di Radiologia Istituto Giannina GasliniGenoaItaly
  3. 3.Dipartimento di Scienze per la Promozione della Salute e Materno-infantile “G. D’Alessandro”Università degli Studi di PalermoPalermoItaly
  4. 4.Dipartimento di Scienze RadiologichePoliclinico Università di PalermoPalermoItaly

Personalised recommendations