European Radiology

, Volume 24, Issue 1, pp 112–119

Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention

  • Kazuhiro Saito
  • Joseph Ledsam
  • Steven Sourbron
  • Tsuyoshi Hashimoto
  • Yoichi Araki
  • Soichi Akata
  • Koichi Tokuuye
Hepatobiliary-Pancreas

Abstract

Objective

To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve.

Methods

Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15–16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child–Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis.

Results

Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4–0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05).

Conclusion

Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve.

Key points

• Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve.

• DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy.

• The analysis method can be used for preoperative liver function evaluation.

Keywords

Tracer kinetic modelling Liver functional reserve Gd-EOB-DTPA Galactosyl human serum albumin scintigraphy Indocyanine green retention 

References

  1. 1.
    Lau H, Man K, Fan ST, Yu WC, Lo CM, Wong J (1997) Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. Br J Surg 84:1255–1259PubMedCrossRefGoogle Scholar
  2. 2.
    Manizate F, Hiotis SP, Labow D, Roayaie S, Schwartz M (2010) Liver functional reserve estimation: state of the art and relevance for local treatments: the Western perspective. J Hepatobiliary Pancreat Sci 17:385–388PubMedCrossRefGoogle Scholar
  3. 3.
    Kamath PS, Wiesner RH, Malinchoc M et al (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33:464–470PubMedCrossRefGoogle Scholar
  4. 4.
    Stadalnik RC, Vera DR, Woodle ES et al (1985) Technetium-99m NGA functional hepatic imaging: preliminary clinical experience. J Nucl Med 26:1233–1242PubMedGoogle Scholar
  5. 5.
    Vera DR, Krohn KA, Scheibe PO, Stadalnik RC (1985) Identifiability analysis of an in vivo receptor-binding radiopharmacokinetic system. IEEE Trans Biomed Eng 32:312–322PubMedCrossRefGoogle Scholar
  6. 6.
    Vera DR, Krohn KA, Stadalnik RC, Scheibe PO (1984) Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocytes. Radiology 151:191–196PubMedGoogle Scholar
  7. 7.
    Vera DR, Krohn KA, Stadalnik RC, Scheibe PO (1984) Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding. J Nucl Med 25:779–787PubMedGoogle Scholar
  8. 8.
    Vera DR, Stadalnik RC, Krohn KA (1985) Technetium-99m galactosyl-neoglycoalbumin: preparation and preclinical studies. J Nucl Med 26:1157–1167PubMedGoogle Scholar
  9. 9.
    Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE (2003) Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 229:409–414PubMedCrossRefGoogle Scholar
  10. 10.
    Baxter S, Wang ZJ, Joe BN, Qayyum A, Taouli B, Yeh BM (2009) Timing bolus dynamic contrast-enhanced (DCE) MRI assessment of hepatic perfusion: initial experience. J Magn Reson Imaging 29:1317–1322PubMedCrossRefGoogle Scholar
  11. 11.
    Blomley MJ, Coulden R, Dawson P et al (1995) Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr 19:424–433PubMedCrossRefGoogle Scholar
  12. 12.
    Hagiwara M, Rusinek H, Lee VS et al (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging–initial experience. Radiology 246:926–934PubMedCrossRefGoogle Scholar
  13. 13.
    Koh TS, Thng CH, Hartono S et al (2009) Dynamic contrast-enhanced CT imaging of hepatocellular carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol with tracer kinetics modeling. Eur Radiol 19:1184–1196PubMedCrossRefGoogle Scholar
  14. 14.
    Miles KA, Hayball MP, Dixon AK (1993) Functional images of hepatic perfusion obtained with dynamic CT. Radiology 188:405–411PubMedGoogle Scholar
  15. 15.
    Ryeom HK, Kim SH, Kim JY et al (2004) Quantitative evaluation of liver function with MRI using Gd-EOB-DTPA. Korean J Radiol 5:231–239PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Thng CH, Koh TS, Collins DJ, Koh DM (2010) Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 176:667–673PubMedCrossRefGoogle Scholar
  18. 18.
    Godfrey EM, Mannelli L, Griffin N, Lomas DJ (2013) Magnetic resonance elastography in the diagnosis of hepatic fibrosis. Semin Ultrasound CT MR 34:81–88PubMedCrossRefGoogle Scholar
  19. 19.
    Herold C, Reck T, Fischler P et al (2002) Prognosis of a large cohort of patients with hepatocellular carcinoma in a single European centre. Liver 22:23–28PubMedCrossRefGoogle Scholar
  20. 20.
    Nagasue N, Kohno H, Chang YC et al (1993) Liver resection for hepatocellular carcinoma. Results of 229 consecutive patients during 11 years. Ann Surg 217:375–384PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Okamoto E, Kyo A, Yamanaka N, Tanaka N, Kuwata K (1984) Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery 95:586–592PubMedGoogle Scholar
  22. 22.
    Truant S, Oberlin O, Sergent G et al (2007) Remnant liver volume to body weight ratio > or =0.5 %: a new cut-off to estimate postoperative risks after extended resection in noncirrhotic liver. J Am Coll Surg 204:22–33PubMedCrossRefGoogle Scholar
  23. 23.
    Iimuro Y, Kashiwagi T, Yamanaka J et al (2010) Preoperative estimation of asialoglycoprotein receptor expression in the remnant liver from CT/99mTc-GSA SPECT fusion images correlates well with postoperative liver function parameters. J Hepatobiliary Pancreat Sci 17:673–681PubMedCrossRefGoogle Scholar
  24. 24.
    Kaibori M, Ha-Kawa SK, Maehara M et al (2011) Usefulness of Tc-99m-GSA scintigraphy for liver surgery. Ann Nucl Med 25:593–602PubMedCrossRefGoogle Scholar
  25. 25.
    Ashwell G, Morell AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41:99–128PubMedGoogle Scholar
  26. 26.
    Kashiwagi T, Yutani K, Fukuchi M et al (2002) Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT. Ann Nucl Med 16:255–261PubMedCrossRefGoogle Scholar
  27. 27.
    Ichikawa T, Saito K, Yoshioka N et al (2010) Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease. Invest Radiol 45:133–141PubMedCrossRefGoogle Scholar
  28. 28.
    Vogl TJ, Kummel S, Hammerstingl R et al (1996) Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 200:59–67PubMedGoogle Scholar
  29. 29.
    Clement O, Siauve N, Lewin M, de Kerviler E, Cuenod CA, Frija G (1998) Contrast agents in magnetic resonance imaging of the liver: present and future. Biomed Pharmacother 52:51–58PubMedCrossRefGoogle Scholar
  30. 30.
    Nilsson H, Nordell A, Vargas R, Douglas L, Jonas E, Blomqvist L (2009) Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 29:1323–1331PubMedCrossRefGoogle Scholar
  31. 31.
    Saito K, Ledsam J, Sourbron S et al (2012) Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. J Magn Reson Imaging 37:1109–1114PubMedCrossRefGoogle Scholar
  32. 32.
    Sourbron S, Sommer WH, Reiser MF, Zech CJ (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263:874–883PubMedCrossRefGoogle Scholar
  33. 33.
    Nilsson H, Blomqvist L, Douglas L, Nordell A, Jonas E (2010) Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB (Oxford) 12:567–576CrossRefGoogle Scholar
  34. 34.
    Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649PubMedCrossRefGoogle Scholar
  35. 35.
    Ichida FTT, Omata M, Ichida T, Inoue K, Kamimura T, Yamada G, Hino K, Yokosuka O, Suzuki H (1996) New Inuyama classification; new criteria for histological assessment of chronic hepatitis. Int Hepatol Commun 6:112–119CrossRefGoogle Scholar
  36. 36.
    Watanabe H, Kanematsu M, Goshima S et al (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging–preliminary observations. Radiology 259:142–150PubMedCrossRefGoogle Scholar
  37. 37.
    Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7PubMedCrossRefGoogle Scholar
  38. 38.
    Pedersen M, Shi Y, Anderson P et al (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517PubMedCrossRefGoogle Scholar
  39. 39.
    Ha-Kawa SK, Tanaka Y, Hasebe S et al (1997) Compartmental analysis of asialoglycoprotein receptor scintigraphy for quantitative measurement of liver function: a multicentre study. Eur J Nucl Med 24:130–137PubMedCrossRefGoogle Scholar
  40. 40.
    Koizumi K, Uchiyama G, Arai T, Ainoda T, Yoda Y (1992) A new liver functional study using Tc-99m DTPA-galactosyl human serum albumin: evaluation of the validity of several functional parameters. Ann Nucl Med 6:83–87PubMedCrossRefGoogle Scholar
  41. 41.
    Makuuchi M, Kosuge T, Takayama T et al (1993) Surgery for small liver cancers. Semin Surg Oncol 9:298–304PubMedCrossRefGoogle Scholar
  42. 42.
    Burgess JB, Baenziger JU, Brown WR (1992) Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis. Hepatology 15:702–706PubMedCrossRefGoogle Scholar
  43. 43.
    Hwang EH, Taki J, Shuke N et al (1999) Preoperative assessment of residual hepatic functional reserve using 99mTc-DTPA-galactosyl-human serum albumin dynamic SPECT. J Nucl Med 40:1644–1651PubMedGoogle Scholar
  44. 44.
    Kwon AH, Ha-Kawa SK, Uetsuji S, Inoue T, Matsui Y, Kamiyama Y (1997) Preoperative determination of the surgical procedure for hepatectomy using technetium-99m-galactosyl human serum albumin (99mTc-GSA) liver scintigraphy. Hepatology 25:426–429PubMedCrossRefGoogle Scholar
  45. 45.
    Kwon AH, Matsui Y, Kaibori M, Ha-Kawa SK (2006) Preoperative regional maximal removal rate of technetium-99m-galactosyl human serum albumin (GSA-Rmax) is useful for judging the safety of hepatic resection. Surgery 140:379–386PubMedCrossRefGoogle Scholar
  46. 46.
    Mastai R, Laganiere S, Wanless IR, Giroux L, Rocheleau B, Huet PM (1996) Hepatic sinusoidal fibrosis induced by cholesterol and stilbestrol in the rabbit: 2. Hemodynamic and drug disposition studies. Hepatology 24:865–870PubMedCrossRefGoogle Scholar
  47. 47.
    Iguchi T, Sato S, Kouno Y et al (2003) Comparison of Tc-99m-GSA scintigraphy with hepatic fibrosis and regeneration in patients with hepatectomy. Ann Nucl Med 17:227–233PubMedCrossRefGoogle Scholar
  48. 48.
    Van Beers BE, Materne R, Annet L et al (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699PubMedCrossRefGoogle Scholar
  49. 49.
    Nguyen-Khac E, Lobry C, Chatelain D et al (2013) A reappraisal of chemotherapy-induced liver injury in colorectal liver metastases before the era of antiangiogenics. Int J Hepatol 2013:314868PubMedCentralPubMedGoogle Scholar
  50. 50.
    Shaib YH, El-Serag HB, Nooka AK et al (2007) Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a hospital-based case-control study. Am J Gastroenterol 102:1016–1021PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Kazuhiro Saito
    • 1
  • Joseph Ledsam
    • 2
  • Steven Sourbron
    • 2
  • Tsuyoshi Hashimoto
    • 1
  • Yoichi Araki
    • 1
  • Soichi Akata
    • 1
  • Koichi Tokuuye
    • 1
  1. 1.Department of RadiologyTokyo Medical UniversityTokyoJapan
  2. 2.Division of Medical PhysicsUniversity of LeedsLeedsUK

Personalised recommendations