European Radiology

, Volume 23, Issue 12, pp 3393–3404

Neuroimaging of dementia in 2013: what radiologists need to know

  • Sven Haller
  • Valentina Garibotto
  • Enikö Kövari
  • Constantin Bouras
  • Aikaterini Xekardaki
  • Cristelle Rodriguez
  • Maciej Jakub Lazarczyk
  • Panteleimon Giannakopoulos
  • Karl-Olof Lovblad


The structural and functional neuroimaging of dementia have substantially evolved over the last few years. The most common forms of dementia, Alzheimer disease (AD), Lewy body dementia (LBD) and fronto-temporal lobar degeneration (FTLD), have distinct patterns of cortical atrophy and hypometabolism that evolve over time, as reviewed in the first part of this article. The second part discusses unspecific white matter alterations on T2-weighted and fluid-attenuated inversion recovery (FLAIR) images as well as cerebral microbleeds, which often occur during normal aging and may affect cognition. The third part summarises molecular neuroimaging biomarkers recently developed to visualise amyloid deposits, tau protein deposits and neurotransmitter systems. The fourth section reviews the utility of advanced image analysis techniques as predictive biomarkers of cognitive decline in individuals with early symptoms compatible with mild cognitive impairment (MCI). As only about half of MCI cases will progress to clinically overt dementia, whereas the other half remain stable or might even improve, the discrimination of stable versus progressive MCI is of paramount importance for both individual patient treatment and patient selection for clinical trials. The fifth and final part discusses the inter-individual variation in the neurocognitive reserve, which is a potential constraint for all proposed methods.

Key Points

• Many forms of dementia have spatial atrophy patterns detectable on neuroimaging.

• Early treatment of dementia is beneficial, indicating the need for early diagnosis.

• Advanced image analysis techniques detect subtle anomalies invisible on radiological evaluation.

• Inter-individual variation explains variable cognitive impairment despite the same degree of atrophy.


Dementia Alzheimer MCI Cognitive decline Frontal dementia Fronto-temporal lobar degeneration 



Alzheimer disease


cerebral amyloid angiopathy


cortico-basal degeneration


cortico-basal syndrome


cerebral microbleeds


cerebral microhaemorrhages


diffuse axonal injury


corticobasal degeneration


dementia with Lewy bodies


diffusion tensor imaging




fluid-attenuated inversion recovery


fronto-temporal dementia


fronto-temporal lobar degeneration


grey matter




logopaenic aphasia


mild cognitive impairment


neurodegeneration with brain iron accumulation


posterior cortical atrophy


11C-Pittsburgh compound B


Pick’s disease


positron emission tomography


progressive non-fluent aphasia


primary progressive aphasia


progressive supranuclear palsy


semantic dementia


single photon emission computed tomography


support vector machine


susceptibility-weighted imaging


tract-based spatial statistics


unspecific bright object


vascular dementia


voxel-based analysis


white matter


  1. 1.
    Lazarczyk MJ, Hof PR, Bouras C et al (2012) Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals. BMC Med 10:127PubMedCrossRefGoogle Scholar
  2. 2.
    Chetelat G, Desgranges B, Landeau B et al (2008) Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease. Brain 131:60–71PubMedCrossRefGoogle Scholar
  3. 3.
    Lim SM, Katsifis A, Villemagne VL et al (2009) The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 50:1638–1645PubMedCrossRefGoogle Scholar
  4. 4.
    McKeith I, O'Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313PubMedCrossRefGoogle Scholar
  5. 5.
    Rohrer JD (2012) Structural brain imaging in frontotemporal dementia. Biochim Biophys Acta 1822:325–332PubMedCrossRefGoogle Scholar
  6. 6.
    Gorno-Tempini ML, Dronkers NF, Rankin KP et al (2004) Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 55:335–346PubMedCrossRefGoogle Scholar
  7. 7.
    Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014PubMedCrossRefGoogle Scholar
  8. 8.
    Rohrer JD, Ridgway GR, Crutch SJ et al (2010) Progressive logopenic/phonological aphasia: erosion of the language network. NeuroImage 49:984–993PubMedCrossRefGoogle Scholar
  9. 9.
    Rabinovici GD, Jagust WJ, Furst AJ et al (2008) Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 64:388–401PubMedCrossRefGoogle Scholar
  10. 10.
    Lindberg O, Ostberg P, Zandbelt BB et al (2009) Cortical morphometric subclassification of frontotemporal lobar degeneration. AJNR Am J Neuroradiol 30:1233–1239PubMedCrossRefGoogle Scholar
  11. 11.
    Groschel K, Kastrup A, Litvan I et al (2006) Penguins and hummingbirds: midbrain atrophy in progressive supranuclear palsy. Neurology 66:949–950PubMedCrossRefGoogle Scholar
  12. 12.
    Quattrone A, Nicoletti G, Messina D et al (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246:214–221PubMedCrossRefGoogle Scholar
  13. 13.
    Hayflick SJ, Hartman M, Coryell J et al (2006) Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 27:1230–1233PubMedGoogle Scholar
  14. 14.
    Garde E, Mortensen EL, Krabbe K et al (2000) Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: a longitudinal study. Lancet 356:628–634PubMedCrossRefGoogle Scholar
  15. 15.
    Ylikoski A, Erkinjuntti T, Raininko R et al (1995) White matter hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of consecutive subjects aged 55 to 85 years living at home. Stroke 26:1171–1177PubMedCrossRefGoogle Scholar
  16. 16.
    Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666PubMedCrossRefGoogle Scholar
  17. 17.
    Inzitari D, Simoni M, Pracucci G et al (2007) Risk of rapid global functional decline in elderly patients with severe cerebral age-related white matter changes: the LADIS study. Arch Intern Med 167:81–88PubMedCrossRefGoogle Scholar
  18. 18.
    Murray AD, Staff RT, McNeil CJ et al (2011) The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer's diseases. Brain 134:3687–3696PubMedCrossRefGoogle Scholar
  19. 19.
    Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71:804–811PubMedCrossRefGoogle Scholar
  20. 20.
    Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82:126–135PubMedCrossRefGoogle Scholar
  21. 21.
    Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659PubMedCrossRefGoogle Scholar
  22. 22.
    Fazekas F, Kleinert R, Offenbacher H et al (1993) Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43:1683–1689PubMedCrossRefGoogle Scholar
  23. 23.
    Grafton ST, Sumi SM, Stimac GK et al (1991) Comparison of postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white matter. Arch Neurol 48:293–298PubMedCrossRefGoogle Scholar
  24. 24.
    van Swieten JC, van den Hout JH, van Ketel BA et al (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114:761–774PubMedCrossRefGoogle Scholar
  25. 25.
    Haller S, Kovari E, Herrmann FR et al (2013) Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathologica Commun 1:14CrossRefGoogle Scholar
  26. 26.
    Topakian R, Barrick TR, Howe FA et al (2010) Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 81:192–197PubMedCrossRefGoogle Scholar
  27. 27.
    de Groot JC, de Leeuw FE, Oudkerk M et al (2000) Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 57:1071–1076PubMedCrossRefGoogle Scholar
  28. 28.
    Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174PubMedCrossRefGoogle Scholar
  29. 29.
    Goos JD, van der Flier WM, Knol DL et al (2011) Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke 42:1894–1900PubMedCrossRefGoogle Scholar
  30. 30.
    Cordonnier C, van der Flier WM, Sluimer JD et al (2006) Prevalence and severity of microbleeds in a memory clinic setting. Neurology 66:1356–1360PubMedCrossRefGoogle Scholar
  31. 31.
    Cordonnier C, Al-Shahi Salman R, Wardlaw J (2007) Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 130:1988–2003PubMedCrossRefGoogle Scholar
  32. 32.
    Nandigam RN, Viswanathan A, Delgado P et al (2009) MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 30:338–343PubMedCrossRefGoogle Scholar
  33. 33.
    Ayaz M, Boikov AS, Haacke EM et al (2010) Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 31:142–148PubMedCrossRefGoogle Scholar
  34. 34.
    Kirsch W, McAuley G, Holshouser B et al (2009) Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. J Alzheimers Dis 17:599–609PubMedGoogle Scholar
  35. 35.
    Haller S, Bartsch A, Nguyen D et al (2010) Cerebral microhemorrhage and iron deposition in mild cognitive impairment: susceptibility-weighted MR imaging assessment. Radiology 257:764–773PubMedCrossRefGoogle Scholar
  36. 36.
    Uetani H, Hirai T, Hashimoto M et al (2013) Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. AJNR Am J Neuroradiol 34:984–989PubMedCrossRefGoogle Scholar
  37. 37.
    Gold G, Giannakopoulos P, Herrmann FR et al (2007) Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain 130:2830–2836PubMedCrossRefGoogle Scholar
  38. 38.
    Fisher M, French S, Ji P et al (2010) Cerebral microbleeds in the elderly: a pathological analysis. Stroke 41:2782–2785PubMedCrossRefGoogle Scholar
  39. 39.
    Tanskanen M, Makela M, Myllykangas L et al (2012) Intracerebral hemorrhage in the oldest old: a population-based study (vantaa 85+). Front Neurol 3:103PubMedCrossRefGoogle Scholar
  40. 40.
    Fazekas F, Kleinert R, Roob G et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20:637–642PubMedGoogle Scholar
  41. 41.
    Schrag M, McAuley G, Pomakian J et al (2010) Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 119:291–302PubMedCrossRefGoogle Scholar
  42. 42.
    Tatsumi S, Shinohara M, Yamamoto T (2008) Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis 26:142–146PubMedCrossRefGoogle Scholar
  43. 43.
    Torosyan N, Silverman DH (2012) Neuronuclear imaging in the evaluation of dementia and mild decline in cognition. Semin Nucl Med 42:415–422PubMedCrossRefGoogle Scholar
  44. 44.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  45. 45.
    Nordberg A (2011) Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimers Res Ther 3:34PubMedCrossRefGoogle Scholar
  46. 46.
    Clark CM, Schneider JA, Bedell BJ et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283PubMedCrossRefGoogle Scholar
  47. 47.
    Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517PubMedCrossRefGoogle Scholar
  48. 48.
    Chetelat G, Villemagne VL, Pike KE et al (2011) Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease. Brain 134:798–807PubMedCrossRefGoogle Scholar
  49. 49.
    Nordberg A, Carter SF, Rinne J et al (2013) A European multicentre PET study of fibrillar amyloid in Alzheimer's disease. Eur J Nucl Med Mol Imaging 40:104–114PubMedCrossRefGoogle Scholar
  50. 50.
    Rowe CC, Ng S, Ackermann U et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725PubMedCrossRefGoogle Scholar
  51. 51.
    Small GW, Kepe V, Ercoli LM et al (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663PubMedCrossRefGoogle Scholar
  52. 52.
    Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease. Brain 134:1089–1100PubMedCrossRefGoogle Scholar
  53. 53.
    Cagnin A, Kassiou M, Meikle SR et al (2006) In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185:107–114PubMedCrossRefGoogle Scholar
  54. 54.
    Iannaccone S, Cerami C, Alessio M et al (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord 19:47–52PubMedCrossRefGoogle Scholar
  55. 55.
    Marcone A, Garibotto V, Moresco RM et al (2012) [(11)C]-MP4A PET cholinergic measurements in amnestic mild cognitive impairment, probable Alzheimer's disease, and dementia with Lewy bodies: a Bayesian method and voxel-based analysis. J Alzheimers Dis 31:387–399PubMedGoogle Scholar
  56. 56.
    Kendziorra K, Wolf H, Meyer PM et al (2011) Decreased cerebral alpha4beta2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography. Eur J Nucl Med Mol Imaging 38:515–525PubMedCrossRefGoogle Scholar
  57. 57.
    Franceschi M, Anchisi D, Pelati O et al (2005) Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Ann Neurol 57:216–225PubMedCrossRefGoogle Scholar
  58. 58.
    Nitsch RM, Hock C (2008) Targeting beta-amyloid pathology in Alzheimer's disease with Abeta immunotherapy. Neurotherapeutics 5:415–420PubMedCrossRefGoogle Scholar
  59. 59.
    Duara R, Barker W, Loewenstein D et al (2009) The basis for disease-modifying treatments for Alzheimer's disease: the sixth annual mild cognitive impairment symposium. Alzheimers Dement 5:66–74PubMedCrossRefGoogle Scholar
  60. 60.
    Holmes C, Boche D, Wilkinson D et al (2008) Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223PubMedCrossRefGoogle Scholar
  61. 61.
    Lannfelt L, Blennow K, Zetterberg H et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786PubMedCrossRefGoogle Scholar
  62. 62.
    Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194PubMedCrossRefGoogle Scholar
  63. 63.
    Petersen RC, Negash S (2008) Mild cognitive impairment: an overview. CNS Spectr 13:45–53PubMedGoogle Scholar
  64. 64.
    Mariani E, Monastero R, Mecocci P (2007) Mild cognitive impairment: a systematic review. J Alzheimers Dis 12:23–35PubMedGoogle Scholar
  65. 65.
    Forlenza OV, Diniz BS, Nunes PV et al (2009) Diagnostic transitions in mild cognitive impairment subtypes. Int Psychogeriatr 21:1088–1095PubMedCrossRefGoogle Scholar
  66. 66.
    Mueller SG, Weiner MW, Thal LJ et al (2005) Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66PubMedCrossRefGoogle Scholar
  67. 67.
    Lovestone S, Francis P, Kloszewska I et al (2009) AddNeuroMed—the European collaboration for the discovery of novel biomarkers for Alzheimer's disease. Ann N Y Acad Sci 1180:36–46PubMedCrossRefGoogle Scholar
  68. 68.
    Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821PubMedCrossRefGoogle Scholar
  69. 69.
    Scahill RI, Schott JM, Stevens JM et al (2002) Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A 99:4703–4707PubMedCrossRefGoogle Scholar
  70. 70.
    Karas GB, Burton EJ, Rombouts SA et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry. NeuroImage 18:895–907PubMedCrossRefGoogle Scholar
  71. 71.
    Karas GB, Scheltens P, Rombouts SA et al (2004) Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. NeuroImage 23:708–716PubMedCrossRefGoogle Scholar
  72. 72.
    Karas G, Sluimer J, Goekoop R et al (2008) Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. AJNR Am J Neuroradiol 29:944–949PubMedCrossRefGoogle Scholar
  73. 73.
    Chupin M, Gerardin E, Cuingnet R et al (2009) Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19:579–587PubMedCrossRefGoogle Scholar
  74. 74.
    Holland D, Brewer JB, Hagler DJ et al (2009) Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proc Natl Acad Sci U S A 106:20954–20959PubMedCrossRefGoogle Scholar
  75. 75.
    Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505PubMedCrossRefGoogle Scholar
  76. 76.
    Damoiseaux JS, Smith SM, Witter MP et al (2009) White matter tract integrity in aging and Alzheimer's disease. Hum Brain Mapp 30:1051–1059PubMedCrossRefGoogle Scholar
  77. 77.
    Liu Y, Spulber G, Lehtimaki KK et al (2011) Diffusion tensor imaging and tract-based spatial statistics in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging 32(9):1558–1571PubMedCrossRefGoogle Scholar
  78. 78.
    Teipel SJ, Meindl T, Grinberg L et al (2011) The cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study. Hum Brain Mapp 32(9):1349–1362PubMedCrossRefGoogle Scholar
  79. 79.
    Teipel SJ, Pogarell O, Meindl T et al (2009) Regional networks underlying interhemispheric connectivity: an EEG and DTI study in healthy ageing and amnestic mild cognitive impairment. Hum Brain Mapp 30:2098–2119PubMedCrossRefGoogle Scholar
  80. 80.
    Arenaza-Urquijo EM, Bosch B, Sala-Llonch R et al (2011) Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders. Am J Geriatr Psychiatry 19:33–42PubMedCrossRefGoogle Scholar
  81. 81.
    Bosch B, Arenaza-Urquijo EM, Rami L et al (2012) Multiple DTI index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging 33:61–74PubMedCrossRefGoogle Scholar
  82. 82.
    Teipel SJ, Meindl T, Wagner M et al (2010) Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: a DTI follow-up study. J Alzheimers Dis 22:507–522PubMedGoogle Scholar
  83. 83.
    Haller S, Nguyen D, Rodriguez C et al (2010) Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J Alzheimers Dis 22:315–327PubMedGoogle Scholar
  84. 84.
    O'Dwyer L, Lamberton F, Bokde AL et al (2012) Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One 7:e32441PubMedCrossRefGoogle Scholar
  85. 85.
    Haller S, Lovblad KO, Giannakopoulos P (2011) Principles of classification analyses in mild cognitive impairment (MCI) and Alzheimer disease. J Alzheimers Dis 26(Suppl 3):389–394PubMedGoogle Scholar
  86. 86.
    Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567PubMedCrossRefGoogle Scholar
  87. 87.
    Plant C, Teipel SJ, Oswald A et al (2010) Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage 50:162–174PubMedCrossRefGoogle Scholar
  88. 88.
    Misra C, Fan Y, Davatzikos C (2009) Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44:1415–1422PubMedCrossRefGoogle Scholar
  89. 89.
    Fan Y, Batmanghelich N, Clark CM et al (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39:1731–1743PubMedCrossRefGoogle Scholar
  90. 90.
    Haller S, Missonnier P, Herrmann FR et al (2013) Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI. AJNR Am J Neuroradiol 34:283–291PubMedCrossRefGoogle Scholar
  91. 91.
    Wee CY, Yap PT, Zhang D et al (2012) Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59:2045–2056PubMedCrossRefGoogle Scholar
  92. 92.
    Caroli A, Prestia A, Chen K et al (2012) Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med 53:592–600PubMedCrossRefGoogle Scholar
  93. 93.
    Chen K, Ayutyanont N, Langbaum JB et al (2011) Characterizing Alzheimer's disease using a hypometabolic convergence index. NeuroImage 56:52–60PubMedCrossRefGoogle Scholar
  94. 94.
    Garibotto V, Montandon ML, Viaud CT et al (2013) Regions of interest-based discriminant analysis of DaTSCAN SPECT and FDG-PET for the classification of dementia. Clin Nucl Med 38:e112–e117PubMedCrossRefGoogle Scholar
  95. 95.
    Haense C, Herholz K, Jagust WJ et al (2009) Performance of FDG PET for detection of Alzheimer's disease in two independent multicentre samples (NEST-DD and ADNI). Dement Geriatr Cogn Disord 28:259–266PubMedCrossRefGoogle Scholar
  96. 96.
    Minoshima S, Frey KA, Koeppe RA et al (1995) A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248PubMedGoogle Scholar
  97. 97.
    Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356PubMedCrossRefGoogle Scholar
  98. 98.
    Fotenos AF, Mintun MA, Snyder AZ et al (2008) Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 65:113–120PubMedCrossRefGoogle Scholar
  99. 99.
    Garibotto V, Borroni B, Kalbe E et al (2008) Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology 71:1342–1349PubMedCrossRefGoogle Scholar
  100. 100.
    Perneczky R, Haussermann P, Diehl-Schmid J et al (2007) Metabolic correlates of brain reserve in dementia with Lewy bodies: an FDG PET study. Dement Geriatr Cogn Disord 23:416–422PubMedCrossRefGoogle Scholar
  101. 101.
    Premi E, Garibotto V, Gazzina S et al (2013) Beyond cognitive reserve: behavioural reserve hypothesis in frontotemporal dementia. Behav Brain Res 245:58–62PubMedCrossRefGoogle Scholar
  102. 102.
    Roe CM, Mintun MA, Ghoshal N et al (2010) Alzheimer disease identification using amyloid imaging and reserve variables: proof of concept. Neurology 75:42–48PubMedCrossRefGoogle Scholar
  103. 103.
    Vemuri P, Weigand SD, Przybelski SA et al (2011) Cognitive reserve and Alzheimer's disease biomarkers are independent determinants of cognition. Brain 134:1479–1492PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Sven Haller
    • 1
    • 4
  • Valentina Garibotto
    • 2
  • Enikö Kövari
    • 3
  • Constantin Bouras
    • 3
  • Aikaterini Xekardaki
    • 3
  • Cristelle Rodriguez
    • 3
  • Maciej Jakub Lazarczyk
    • 3
  • Panteleimon Giannakopoulos
    • 3
  • Karl-Olof Lovblad
    • 1
  1. 1.Department of Imaging and Medical InformaticsUniversity Hospitals of Geneva and Faculty of Medicine of the University of GenevaGenevaSwitzerland
  2. 2.Department of Nuclear MedicineHospitals of Geneva and Faculty of Medicine of the University of GenevaGenevaSwitzerland
  3. 3.Department of Mental Health and PsychiatryUniversity Hospitals of Geneva and Faculty of Medicine of the University of GenevaGenevaSwitzerland
  4. 4.Service neuro-diagnostique et neuro-interventionnel DISIMUniversity Hospitals of GenevaGeneva 14Switzerland

Personalised recommendations