Advertisement

European Radiology

, Volume 23, Issue 6, pp 1603–1622 | Cite as

Methodological quality of diagnostic accuracy studies on non-invasive coronary CT angiography: influence of QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) items on sensitivity and specificity

  • Sabine Schueler
  • Stefan Walther
  • Georg M. Schuetz
  • Peter Schlattmann
  • Marc DeweyEmail author
Computed Tomography

Abstract

Objectives

To evaluate the methodological quality of diagnostic accuracy studies on coronary computed tomography (CT) angiography using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies included in systematic reviews) tool.

Methods

Each QUADAS item was individually defined to adapt it to the special requirements of studies on coronary CT angiography. Two independent investigators analysed 118 studies using 12 QUADAS items. Meta-regression and pooled analyses were performed to identify possible effects of methodological quality items on estimates of diagnostic accuracy.

Results

The overall methodological quality of coronary CT studies was merely moderate. They fulfilled a median of 7.5 out of 12 items. Only 9 of the 118 studies fulfilled more than 75 % of possible QUADAS items. One QUADAS item (“Uninterpretable Results”) showed a significant influence (P = 0.02) on estimates of diagnostic accuracy with “no fulfilment” increasing specificity from 86 to 90 %. Furthermore, pooled analysis revealed that each QUADAS item that is not fulfilled has the potential to change estimates of diagnostic accuracy.

Conclusions

The methodological quality of studies investigating the diagnostic accuracy of non-invasive coronary CT is only moderate and was found to affect the sensitivity and specificity. An improvement is highly desirable because good methodology is crucial for adequately assessing imaging technologies.

Key Points

Good methodological quality is a basic requirement in diagnostic accuracy studies.

Most coronary CT angiography studies have only been of moderate design quality.

Weak methodological quality will affect the sensitivity and specificity.

No improvement in methodological quality was observed over time.

Authors should consider the QUADAS checklist when undertaking accuracy studies.

Keywords

Coronary CT angiography QUADAS Methodological quality Diagnostic accuracy Sensitivity and specificity 

Notes

Acknowledgments

Supported by the Joint programme of the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF) for meta-analyses (01KG1013, 01KG1110).

A pool of 88 studies were obtained from a former investigation of our working group (Schuetz et al., Ann Intern Med, 2010) and additionally 30 studies were retrieved by a systematic search update.

References

  1. 1.
    European Union (2010) Europe in figures—Eurostat yearbook 2010. Publications Office of the European Union, Luxembourg, pp 212–215Google Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM et al (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:188–197PubMedCrossRefGoogle Scholar
  3. 3.
    Luengo-Fernández R, Leal J, Gray A, Petersen S, Rayner M (2006) Cost of cardiovascular diseases in the United Kingdom. Heart 92:1384–1389PubMedCrossRefGoogle Scholar
  4. 4.
    Russell MW, Huse DM, Drowns S, Hamel EC, Hartz SC (1998) Direct medical costs of coronary artery disease in the United States. Am J Cardiol 81:1110–1115PubMedCrossRefGoogle Scholar
  5. 5.
    Noto TJ, Johnson LW, Krone R et al (1991) Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Catheter Cardiovasc Diagn 24:75–83CrossRefGoogle Scholar
  6. 6.
    Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177PubMedCrossRefGoogle Scholar
  7. 7.
    Dewey M (2011) Cardiac CT. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  8. 8.
    Schlattmann P, Schuetz GM, Dewey M (2011) Influence of coronary artery disease prevalence on predictive values of coronary CT angiography: a meta-regression analysis. Eur Radiol 21:1904–1913. doi: 10.1007/s00330-011-2142-2 PubMedCrossRefGoogle Scholar
  9. 9.
    Lijmer JG, Leeflang M, Bossuyt PM (2009) Proposals for a phased evaluation of medical tests. Med Dec Making 29:E13–E21CrossRefGoogle Scholar
  10. 10.
    Whiting P, Rutjes AW, Reitsma JB, Glas AS, Bossuyt PM, Kleijnen J (2004) Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 140:189–202PubMedCrossRefGoogle Scholar
  11. 11.
    Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25PubMedCrossRefGoogle Scholar
  12. 12.
    Dreier M, Borutta B, Stahmeyer J, Krauth C, Walter U (2010) Comparison of tools for assessing the methodological quality of primary and secondary studies in health technology assessment reports in Germany. DIMDI Schriftenr Health Technol Assess 102:176. doi: 10.3205/hta000085L Google Scholar
  13. 13.
    Whiting P, Rutjes AW, Dinnes J, Reitsma JB, Bossuyt PM, Kleijnen J (2005) A systematic review finds that diagnostic reviews fail to incorporate quality despite available tools. J Clin Epidemiol 58:1–12PubMedCrossRefGoogle Scholar
  14. 14.
    Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9PubMedCrossRefGoogle Scholar
  15. 15.
    Reitsma JB, Rutjes AWS, Whiting P, Vlassov VV, Leeflang MMG, Deeks JJ (2009) Chapter 9: Assessing methodological quality. In: Deeks JJ, Bossuyt PM, Gatsonis C (eds), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy, Version 1.0.0., The Cochrane Collaboration: http://srdta.cochrane.org/.
  16. 16.
    Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666PubMedCrossRefGoogle Scholar
  17. 17.
    Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990PubMedCrossRefGoogle Scholar
  18. 18.
    Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR (2007) Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 7:3PubMedCrossRefGoogle Scholar
  19. 19.
    Dwamena BA (2007) midas: A program for Meta-analytical Integration of Diagnostic Accuracy Studies in Stata. Division of Nuclear Medicine, Department of Radiology, University of Michigan Medical School, Ann ArborGoogle Scholar
  20. 20.
    Spearman C (2010) The proof and measurement of association between two things. Int J Epidemiol 39:1137–1150PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen J (1960) A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 20:37–46. doi: 10.1177/001316446002000104 CrossRefGoogle Scholar
  22. 22.
    Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33:363–374PubMedCrossRefGoogle Scholar
  23. 23.
    Feinstein AR, Cicchetti DV (1990) High agreement but low kappa: I. The problems of two paradoxes. J Clin Epidemiol 43:543–549PubMedCrossRefGoogle Scholar
  24. 24.
    Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938PubMedCrossRefGoogle Scholar
  25. 25.
    Andreini D, Pontone G, Bartorelli AL et al (2009) Sixty-four-slice multidetector computed tomography: an accurate imaging modality for the evaluation of coronary arteries in dilated cardiomyopathy of unknown etiology. Circ Cardiovasc Imaging, United States, pp 199–205Google Scholar
  26. 26.
    Bettencourt N, Rocha J, Carvalho M et al (2009) Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. Circ Cardiovasc Imaging 2:306–313PubMedCrossRefGoogle Scholar
  27. 27.
    Boulmier D, Audinet C, Heautot JF et al (2009) Clinical contributions of 64-slice computed tomography in the evaluation of cardiomyopathy of unknown origin. Arch Cardiovasc Dis, Netherlands, pp 685–696Google Scholar
  28. 28.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Diagnostic accuracy of computed tomography coronary angiography in patients with a zero calcium score. Eur Radiol 20:81–87PubMedCrossRefGoogle Scholar
  29. 29.
    Carrascosa P, Capunay C, Deviggiano A et al (2010) Feasibility of 64-slice gadolinium-enhanced cardiac CT for the evaluation of obstructive coronary artery disease. Heart 96:1543–1549PubMedCrossRefGoogle Scholar
  30. 30.
    Carrascosa P, Capunay C, Deviggiano A et al (2010) Accuracy of low-dose prospectively gated axial coronary CT angiography for the assessment of coronary artery stenosis in patients with stable heart rate. J Cardiovasc CT 4:197–205Google Scholar
  31. 31.
    De Graaf FR, Schuijf JD, Van Velzen JE et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur Heart J 31:1908–1915PubMedCrossRefGoogle Scholar
  32. 32.
    Diederichsen AC, Petersen H, Jensen LO et al (2009) Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. Scand Cardiovasc J 43:337–344PubMedCrossRefGoogle Scholar
  33. 33.
    Donati OF, Scheffel H, Stolzmann P et al (2010) Combined cardiac CT and MRI for the comprehensive workup of hemodynamically relevant coronary stenoses. Am J Roentgenol 194:920–926CrossRefGoogle Scholar
  34. 34.
    Hamdan A, Asbach P, Wellnhofer E et al (2011) A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 4:50–61PubMedCrossRefGoogle Scholar
  35. 35.
    Husmann L, Herzog BA, Burger IA et al (2010) Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering. Impact on total effective radiation dose and diagnostic accuracy. Acad Radiol 17:201–206PubMedCrossRefGoogle Scholar
  36. 36.
    Jenkins SMM, Johnston N, Hawkins NM et al (2011) Limited clinical utility of CT coronary angiography in a district hospital setting. QJM 104:49–57PubMedCrossRefGoogle Scholar
  37. 37.
    LaBounty TM, Leipsic J, Mancini GB, et al (2010) Effect of a standardized radiation dose reduction protocol on diagnostic accuracy of coronary computed tomographic angiography. Am J Cardiol 106:287–292Google Scholar
  38. 38.
    Meng L, Cui L, Cheng Y et al (2009) Effect of heart rate and coronary calcification on the diagnostic accuracy of the dual-source CT coronary angiography in patients with suspected coronary artery disease. Korean J Radiol 10:347–354PubMedCrossRefGoogle Scholar
  39. 39.
    Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A (2010) Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery disease: a single center experience. Arch Iran Med 13:373–383PubMedGoogle Scholar
  40. 40.
    Ovrehus KA, Jensen JK, Mickley HF et al (2010) Comparison of usefulness of exercise testing versus coronary computed tomographic angiography for evaluation of patients suspected of having coronary artery disease. Am J Cardiol 105:773–779PubMedCrossRefGoogle Scholar
  41. 41.
    Ovrehus KA, Munkholm H, Bottcher M, Botker Hans E, Norgaard BL (2010) Coronary computed tomographic angiography in patients suspected of coronary artery disease: impact of observer experience on diagnostic performance and interobserver reproducibility. J Cardiovasc CT 4:186–194Google Scholar
  42. 42.
    Pontone G, Andreini D, Bartorelli AL et al (2009) Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355Google Scholar
  43. 43.
    Rocha-Filho JA, Blankstein R, Shturman LD et al (2010) Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology 254:410–419PubMedCrossRefGoogle Scholar
  44. 44.
    Romagnoli A, Martuscelli E, Sperandio M et al (2010) Role of 64-slice cardiac computed tomography in the evaluation of patients with non-ST-elevation acute coronary syndrome. Radiol Med 115:341–353. doi: 10.1007/s11547-009-0482-7 PubMedCrossRefGoogle Scholar
  45. 45.
    Sato A, Nozato T, Hikita H et al (2010) Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol 17:19–26PubMedCrossRefGoogle Scholar
  46. 46.
    Scheffel H, Stolzmann P, Plass A et al (2010) Coronary artery disease in patients with cardiac tumors: preoperative assessment by computed tomography coronary angiography. Interact Cardiovasc Thorac Surg 10:513–518PubMedCrossRefGoogle Scholar
  47. 47.
    Sheikh M, Ben-Nakhi A, Shukkur AM, Sinan T, Al-Rashdan I (2009) Accuracy of 64-multidetector-row computed tomography in the diagnosis of coronary artery disease. Med Princ Pract 18:323–328PubMedCrossRefGoogle Scholar
  48. 48.
    Stagnaro N, Della Latta D, Chiappino D (2009) Diagnostic accuracy of MDCT coronary angiography in patients referred for heart valve surgery. [Italian, English]. Radiol Med 114:728–742PubMedCrossRefGoogle Scholar
  49. 49.
    Thomas C, Brodoefel H, Tsiflikas I et al (2010) Does clinical pretest probability influence image quality and diagnostic accuracy in dual-source coronary CT angiography? Acad Radiol 17:212–218PubMedCrossRefGoogle Scholar
  50. 50.
    Ugolini P, Pressacco J, Lesperance J et al (2009) Evaluation of coronary atheroma by 64-slice multidetector computed tomography: comparison with intravascular ultrasound and angiography. Can J Cardiol 25:641–647PubMedCrossRefGoogle Scholar
  51. 51.
    van Werkhoven JM, Heijenbrok MW, Schuijf JD et al (2010) Diagnostic accuracy of 64-slice multislice computed tomographic coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Am J Cardiol 105:302–305Google Scholar
  52. 52.
    Yang L, Zhang Z, Fan Z et al (2009) 64-MDCT coronary angiography of patients with atrial fibrillation: influence of heart rate on image quality and efficacy in evaluation of coronary artery disease. AJR Am J Roentgenol 193:795–801PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang LJ, Wu SY, Wang J et al (2010) Diagnostic accuracy of dual-source CT coronary angiography: the effect of average heart rate, heart rate variability, and calcium score in a clinical perspective. Acta Radiol 51:727–740PubMedCrossRefGoogle Scholar
  54. 54.
    Achenbach S, Ropers D, Pohle FK et al (2005) Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 26:1978–1986PubMedCrossRefGoogle Scholar
  55. 55.
    Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776PubMedCrossRefGoogle Scholar
  56. 56.
    Andreini D, Pontone G, Pepi M et al (2007) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol 49:2044–2050PubMedCrossRefGoogle Scholar
  57. 57.
    Bayrak F, Guneysu T, Gemici G et al (2008) Diagnostic performance of 64-slice computed tomography coronary angiography to detect significant coronary artery stenosis. Acta Cardiol 63:11–17PubMedCrossRefGoogle Scholar
  58. 58.
    Bonmassari R, Muraglia S, Centonze M, Coser D, Stoppa G, Disertori M (2006) Noninvasive detection of coronary artery stenosis with 16-slice spiral computed tomography in a population at low to moderate risk for coronary artery disease. J Cardiovasc Med 7:817–825CrossRefGoogle Scholar
  59. 59.
    Brodoefel H, Burgstahler C, Tsiflikas I et al (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355PubMedCrossRefGoogle Scholar
  60. 60.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52:1724–1732PubMedCrossRefGoogle Scholar
  61. 61.
    Cademartiri F, Maffei E, Palumbo A et al (2007) Diagnostic accuracy of 64-slice computed tomography coronary angiography in patients with low-to-intermediate risk. Radiol Med (Torino) 112:969–981CrossRefGoogle Scholar
  62. 62.
    Carrascosa P, Capunay C, Bettinotti M et al (2007) Feasibility of gadolinium-diethylene triamine pentaacetic acid enhanced multidetector computed tomography for the evaluation of coronary artery disease. J Cardiovasc Comput Tomogr 1:86–94PubMedCrossRefGoogle Scholar
  63. 63.
    Chow BJ, Dennie C, Hoffmann U et al (2007) Comparison of computed tomographic angiography versus rubidium-82 positron emission tomography for the detection of patients with anatomical coronary artery disease. Can J Cardiol 23:801–807PubMedCrossRefGoogle Scholar
  64. 64.
    Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614PubMedCrossRefGoogle Scholar
  65. 65.
    Cornily JC, Gilard M, Le Gal G et al (2007) Accuracy of 16-detector multislice spiral computed tomography in the initial evaluation of dilated cardiomyopathy. Eur J Radiol 61:84–90PubMedCrossRefGoogle Scholar
  66. 66.
    Davin L, Lancellotti P, Bruyere PJ, Gach O, Pierard L, Legrand V (2007) Diagnostic accuracy of computed tomography coronary angiography in routine practice. Acta Cardiol 62:339–344PubMedCrossRefGoogle Scholar
  67. 67.
    Deetjen AG, Conradi G, Mollmann S et al (2007) Diagnostic value of the 16-detector row multislice spiral computed tomography for the detection of coronary artery stenosis in comparison to invasive coronary angiography. Clin Cardiol 30:118–123PubMedCrossRefGoogle Scholar
  68. 68.
    Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415PubMedCrossRefGoogle Scholar
  69. 69.
    Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875. doi: 10.1161/CIRCULATIONAHA.109.859280 PubMedCrossRefGoogle Scholar
  70. 70.
    Ehara M, Surmely JF, Kawai M et al (2006) Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography. Circ J 70:564–571PubMedCrossRefGoogle Scholar
  71. 71.
    Erdogan N, Akar N, Vural M et al (2006) Diagnostic value of 16-slice multidetector computed tomography in symptomatic patients with suspected significant obstructive coronary artery disease. Hear Vessel 21:278–284CrossRefGoogle Scholar
  72. 72.
    Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411PubMedCrossRefGoogle Scholar
  73. 73.
    Gaudio C, Mirabelli F, Pelliccia F et al (2009) Early detection of coronary artery disease by 64-slice multidetector computed tomography in asymptomatic hypertensive high-risk patients. Int J Cardiol 135:280–286. doi: 10.1016/j.ijcard.2008.03.091 PubMedCrossRefGoogle Scholar
  74. 74.
    Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am J Roentgenol 186:177–184PubMedCrossRefGoogle Scholar
  75. 75.
    Ghostine S, Caussin C, Daoud B et al (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1934PubMedCrossRefGoogle Scholar
  76. 76.
    Gilard M, Cornily JC, Pennec PY et al (2006) Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol 47:2020–2024PubMedCrossRefGoogle Scholar
  77. 77.
    Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44PubMedCrossRefGoogle Scholar
  78. 78.
    Hacker M, Jakobs T, Hack N et al (2007) Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 46:29–35PubMedGoogle Scholar
  79. 79.
    Halon DA, Gaspar T, Adawi S et al (2007) Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology 108:200–209PubMedCrossRefGoogle Scholar
  80. 80.
    Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: The Coronary Angiography by Computed Tomography with the Use of a Submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041PubMedCrossRefGoogle Scholar
  81. 81.
    Henneman MM, Schuijf JD, Jukema JW et al (2006) Comprehensive cardiac assessment with multislice computed tomography: evaluation of left ventricular function and perfusion in addition to coronary anatomy in patients with previous myocardial infarction. Heart 92:1779–1783PubMedCrossRefGoogle Scholar
  82. 82.
    Henneman MM, Schuijf JD, Pundziute G et al (2008) Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol 52:216–222PubMedCrossRefGoogle Scholar
  83. 83.
    Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042PubMedCrossRefGoogle Scholar
  84. 84.
    Herzog C, Nguyen SA, Savino G et al (2007) Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 244:121–129PubMedCrossRefGoogle Scholar
  85. 85.
    Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120PubMedCrossRefGoogle Scholar
  86. 86.
    Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478PubMedCrossRefGoogle Scholar
  87. 87.
    Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643PubMedCrossRefGoogle Scholar
  88. 88.
    Johnson TR, Nikolaou K, Busch S et al (2007) Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Investig Radiol 42:684–691CrossRefGoogle Scholar
  89. 89.
    Kaiser C, Bremerich J, Haller S et al (2005) Limited diagnostic yield of non-invasive coronary angiography by 16-slice multi-detector spiral computed tomography in routine patients referred for evaluation of coronary artery disease. Eur Heart J 26:1987–1992PubMedCrossRefGoogle Scholar
  90. 90.
    Kefer J, Coche E, Legros G et al (2005) Head-to-head comparison of three-dimensional navigator-gated magnetic resonance imaging and 16-slice computed tomography to detect coronary artery stenosis in patients. J Am Coll Cardiol 46:92–100PubMedCrossRefGoogle Scholar
  91. 91.
    Kolnes K, Velle OH, Hareide S, Hegbom K, Wiseth R (2006) Multislice computed tomography coronary angiography at a local hospital: Pitfalls and potential. Acta Radiol 47:680–686PubMedCrossRefGoogle Scholar
  92. 92.
    Laissy JP, Messika-Zeitoun D, Serfaty JM et al (2007) Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart 93:1121–1125PubMedCrossRefGoogle Scholar
  93. 93.
    Langer C, Peterschroder A, Franzke K et al (2009) Noninvasive coronary angiography focusing on calcification: multislice computed tomography compared with magnetic resonance imaging. J Comput Assist Tomogr 33:179–185PubMedCrossRefGoogle Scholar
  94. 94.
    Leber AW, Johnson T, Becker A et al (2007) Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28:2354–2360PubMedCrossRefGoogle Scholar
  95. 95.
    Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRefGoogle Scholar
  96. 96.
    Leschka S, Scheffel H, Desbiolles L et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94:1154–1161PubMedCrossRefGoogle Scholar
  97. 97.
    Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. AJR Am J Roentgenol 190:1583–1590PubMedCrossRefGoogle Scholar
  98. 98.
    Maintz D, Ozgun M, Hoffmeier A et al (2007) Whole-heart coronary magnetic resonance angiography: value for the detection of coronary artery stenoses in comparison to multislice computed tomography angiography. Acta Radiol 48:967–973PubMedCrossRefGoogle Scholar
  99. 99.
    Manghat NE, Morgan-Hughes GJ, Shaw SR et al (2007) Multi-detector row CT coronary angiography in patients with cardiomyopathy—initial single-centre experience. Clin Radiol 62:632–638PubMedCrossRefGoogle Scholar
  100. 100.
    Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-Non Invasive Multicenter Italian Study for Coronary Artery Disease). Eur Radiol 19:1114–1123PubMedCrossRefGoogle Scholar
  101. 101.
    Martuscelli E, Romagnoli A, D’Eliseo A et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048PubMedCrossRefGoogle Scholar
  102. 102.
    Maruyama T, Takada M, Hasuike T, Yoshikawa A, Namimatsu E, Yoshizumi T (2008) Radiation dose reduction and coronary assessability of prospective electrocardiogram-gated computed tomography coronary angiography. Comparison with retrospective electrocardiogram-gated helical scan. J Am Coll Cardiol 52:1450–1455PubMedCrossRefGoogle Scholar
  103. 103.
    Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144PubMedCrossRefGoogle Scholar
  104. 104.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2006) Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol 48:1658–1665PubMedCrossRefGoogle Scholar
  105. 105.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392PubMedCrossRefGoogle Scholar
  106. 106.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336PubMedCrossRefGoogle Scholar
  107. 107.
    Mir-Akbari H, Ripsweden J, Jensen J et al (2009) Limitations of 64-detector-row computed tomography coronary angiography: calcium and motion but not short experience. Acta Radiol 50:174–180PubMedCrossRefGoogle Scholar
  108. 108.
    Mollet NR, Cademartiri F, Krestin GP et al (2005) Improved diagnostic accuracy with 16-row multi-slice computed tomography coronary angiography. J Am Coll Cardiol 45:128–132PubMedCrossRefGoogle Scholar
  109. 109.
    Mollet NR, Cademartiri F, Nieman K et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270PubMedCrossRefGoogle Scholar
  110. 110.
    Mollet NR, Cademartiri F, van Mieghem CAG et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  111. 111.
    Moon JY, Chung N, Choi BW et al (2005) The utility of multi-detector row spiral CT for detection of coronary artery stenoses. Yonsei Med J 46:86–94PubMedCrossRefGoogle Scholar
  112. 112.
    Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313PubMedCrossRefGoogle Scholar
  113. 113.
    Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117PubMedCrossRefGoogle Scholar
  114. 114.
    Nikolaou K, Rist C, Wintersperger BJ et al (2006) Clinical value of MDCT in the diagnosis of coronary artery disease in patients with a low pretest likelihood of significant disease. AJR Am J Roentgenol 186:1659–1668PubMedCrossRefGoogle Scholar
  115. 115.
    Olivetti L, Mazza G, Volpi D, Costa F, Ferrari O, Pirelli S (2006) Multislice CT in emergency room management of patients with chest pain and medium-low probability of acute coronary syndrome. Radiol Med (Torino) 111:1054–1063CrossRefGoogle Scholar
  116. 116.
    Oncel D, Oncel G, Tastan A (2007) Effectiveness of dual-source CT coronary angiography for the evaluation of coronary artery disease in patients with atrial fibrillation: initial experience. Radiology 245:703–711PubMedCrossRefGoogle Scholar
  117. 117.
    Oncel D, Oncel G, Tastan A, Tamci B (2007) Detection of significant coronary artery stenosis with 64-section MDCT angiography. Eur J Radiol 62:394–405PubMedCrossRefGoogle Scholar
  118. 118.
    Pontone G, Andreini D, Ballerini G, Nobili E, Pepi M (2007) Diagnostic work-up of unselected patients with suspected coronary artery disease: complementary role of multidetector computed tomography, symptoms and electrocardiogram stress test. Coron Artery Dis 18:265–274PubMedCrossRefGoogle Scholar
  119. 119.
    Pontone G, Andreini D, Quaglia C, Ballerini G, Nobili E, Pepi M (2007) Accuracy of multidetector spiral computed tomography in detecting significant coronary stenosis in patient populations with differing pre-test probabilities of disease. Clin Radiol 62:978–985PubMedCrossRefGoogle Scholar
  120. 120.
    Postel T, Frick M, Feuchtner G et al (2007) Role of 16-multidetector computed tomography in the assessment of coronary artery stenoses: a prospective study of consecutive patients. Exp Clin Cardiol 12:149–152PubMedGoogle Scholar
  121. 121.
    Pouleur AC, de Waroux JBL, Kefer J, Pasquet A, Vanoverschelde JL, Gerber BL (2008) Direct comparison of whole-heart navigator-gated magnetic resonance coronary angiography and 40- and 64-slice multidetector row computed tomography to detect the coronary artery stenosis in patients scheduled for conventional coronary angiography. Circ Cardiovasc Imaging 1:114–121PubMedCrossRefGoogle Scholar
  122. 122.
    Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582PubMedCrossRefGoogle Scholar
  123. 123.
    Pundziute G, Schuijf JD, Jukema JW et al (2008) Gender influence on the diagnostic accuracy of 64-slice multislice computed tomography coronary angiography for detection of obstructive coronary artery disease. Heart 94:48–52PubMedCrossRefGoogle Scholar
  124. 124.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  125. 125.
    Reant P, Brunot S, Lafitte S et al (2006) Predictive value of noninvasive coronary angiography with multidetector computed tomography to detect significant coronary stenosis before valve surgery. Am J Cardiol 97:1506–1510PubMedCrossRefGoogle Scholar
  126. 126.
    Rixe J, Rolf A, Conradi G et al (2009) Detection of relevant coronary artery disease using dual-source computed tomography in a high probability patient series: comparison with invasive angiography. Circ J 73:316–322PubMedCrossRefGoogle Scholar
  127. 127.
    Rodevand O, Hogalmen G, Gudim LP, Indrebo T, Molstad P, Vandvik PO (2006) Limited usefulness of non-invasive coronary angiography with 16-detector multislice computer tomography at a community hospital. Scand Cardiovasc J 40:76–82PubMedCrossRefGoogle Scholar
  128. 128.
    Romeo F, Leo R, Clementi F et al (2007) Multislice computed tomography in an asymptomatic high-risk population. Am J Cardiol 99:325–328PubMedCrossRefGoogle Scholar
  129. 129.
    Ropers D, Rixe J, Anders K et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348PubMedCrossRefGoogle Scholar
  130. 130.
    Ropers U, Ropers D, Pflederer T et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50:2393–2398PubMedCrossRefGoogle Scholar
  131. 131.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137PubMedCrossRefGoogle Scholar
  132. 132.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  133. 133.
    Scheffel H, Leschka S, Plass A et al (2007) Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol 100:701–706PubMedCrossRefGoogle Scholar
  134. 134.
    Schuijf JD, Pundziute G, Jukema JW et al (2006) Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol 98:145–148PubMedCrossRefGoogle Scholar
  135. 135.
    Shabestari AA, Abdi S, Akhlaghpoor S et al (2007) Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol 99:1656–1661PubMedCrossRefGoogle Scholar
  136. 136.
    Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191:1684–1689PubMedCrossRefGoogle Scholar
  137. 137.
    Tsai IC, Lee T, Lee WL et al (2007) Use of 40-detector row computed tomography before catheter coronary angiography to select early conservative versus early invasive treatment for patients with low-risk acute coronary syndrome. J Comput Assist Tomogr 31:258–264PubMedCrossRefGoogle Scholar
  138. 138.
    Turkvatan A, Biyikoglu SF, Buyukbayraktar F, Olcer T, Cumhur T, Duru E (2008) Clinical value of 16-slice multidetector computed tomography in symptomatic patients with suspected coronary artery disease. Acta Radiol 49:400–408PubMedCrossRefGoogle Scholar
  139. 139.
    Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G (2008) Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiol 49:1140–1144PubMedCrossRefGoogle Scholar
  140. 140.
    Watkins MW, Hesse B, Green CE et al (2007) Detection of coronary artery stenosis using 40-channel computed tomography with multi-segment reconstruction. Am J Cardiol 99:175–181PubMedCrossRefGoogle Scholar
  141. 141.
    Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794PubMedCrossRefGoogle Scholar
  142. 142.
    Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903. doi: 10.1007/s00330-009-1618-9 PubMedCrossRefGoogle Scholar
  143. 143.
    Lipton MJ, Bogaert J, Boxt LM, Reba RC (2002) Imaging of ischemic heart disease. Eur Radiol 12:1061–1080. doi: 10.1007/s003300101131 PubMedCrossRefGoogle Scholar
  144. 144.
    Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198. doi: 10.1007/s00330-008-0883-3 PubMedCrossRefGoogle Scholar
  145. 145.
    Morris RK, Selman TJ, Zamora J, Khan KS (2011) Methodological quality of test accuracy studies included in systematic reviews in obstetrics and gynaecology: sources of bias. BMC Womens Health 11:7PubMedCrossRefGoogle Scholar
  146. 146.
    Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488PubMedCrossRefGoogle Scholar
  147. 147.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695PubMedCrossRefGoogle Scholar
  148. 148.
    Dewey M, Borges AC, Kivelitz D et al (2004) Coronary artery disease: new insights and their implications for radiology. Eur Radiol 14:1048–1054. doi: 10.1007/s00330-003-2175-2 PubMedCrossRefGoogle Scholar
  149. 149.
    Zairis MN, Manousakis SJ, Stefanidis AS et al (2003) C-reactive protein and rapidly progressive coronary artery disease–is there any relation? Clin Cardiol 26:85–90PubMedCrossRefGoogle Scholar
  150. 150.
    Moise A, Théroux P, Taeymans Y et al (1984) Clinical and angiographic factors associated with progression of coronary artery disease. J Am Coll Cardiol 3:659–667PubMedCrossRefGoogle Scholar
  151. 151.
    Boone D, Halligan S, Mallett S, Taylor SA, Altman DG (2012) Systematic review: bias in imaging studies—the effect of manipulating clinical context, recall bias and reporting intensity. Eur Radiol 22:495–505. doi: 10.1007/s00330-011-2294-0 PubMedCrossRefGoogle Scholar
  152. 152.
    Lijmer JG, Mol BW, Heisterkamp S et al (1999) Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 282:1061–1066PubMedCrossRefGoogle Scholar
  153. 153.
    Rutjes AW, Reitsma JB, Di Nisio M, Smidt N, van Rijn JC, Bossuyt PM (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476PubMedGoogle Scholar
  154. 154.
    Hollingworth W, Medina LS, Lenkinski RE et al (2006) Interrater reliability in assessing quality of diagnostic accuracy studies using the QUADAS tool. A preliminary assessment. Acad Radiol 13:803–810PubMedCrossRefGoogle Scholar
  155. 155.
    Westwood ME, Whiting PF, Kleijnen J (2005) How does study quality affect the results of a diagnostic meta-analysis? BMC Med Res Methodol 5:20PubMedCrossRefGoogle Scholar
  156. 156.
    Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536PubMedCrossRefGoogle Scholar
  157. 157.
    Kitchener L, Alderson P, Eisinga A, Hetherington J, Owens N (2005) Glossary of Terms in The Cochrane Collaboration. Version 4.2.5 (updated May 2005). The Cochrane Collaboration, Available from: www.cochrane.org.
  158. 158.
    Schueler S, Schuetz GM, Dewey M (2012) The Revised QUADAS-2 Tool. Ann Intern Med 156:323PubMedCrossRefGoogle Scholar
  159. 159.
    Dawes M (2011) Putting evidence into practice. BMJ 342:d2072PubMedCrossRefGoogle Scholar
  160. 160.
    Howick J, Chalmers I, Glasziou P, et al. (2011) The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine, http://www.cebm.net/index.aspx?o=5653.
  161. 161.
    Schünemann HJ, Schünemann AH, Oxman AD et al (2008) Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ 336:1106–1110PubMedCrossRefGoogle Scholar
  162. 162.
    Sardanelli F, Hunink MG, Gilbert FJ, Di Leo G, Krestin GP (2010) Evidence-based radiology: why and how? Eur Radiol 20:1–15PubMedCrossRefGoogle Scholar
  163. 163.
    Cicchetti DV, Feinstein AR (1990) High agreement but low kappa: II. Resolving the paradoxes. J Clin Epidemiol 43:551–558PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2013

Authors and Affiliations

  • Sabine Schueler
    • 1
  • Stefan Walther
    • 1
  • Georg M. Schuetz
    • 1
  • Peter Schlattmann
    • 2
  • Marc Dewey
    • 1
    • 3
    Email author
  1. 1.Charité Medical School, Department of RadiologyHumboldt-Universität zu Berlin, Freie Universität BerlinBerlinGermany
  2. 2.Department of Medical Statistics, Informatics, and DocumentationUniversity Hospital of Friedrich Schiller University JenaJenaGermany
  3. 3.Charité, Institut für RadiologieBerlinGermany

Personalised recommendations