European Radiology

, Volume 23, Issue 6, pp 1738–1744 | Cite as

MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters

  • Christoph A. Karlo
  • Olivio F. Donati
  • Irene A. Burger
  • Junting Zheng
  • Chaya S. Moskowitz
  • Hedvig Hricak
  • Oguz Akin



To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours.


A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SIIP, SIOP) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference.


A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P < 0.05). Median chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P < 0.001). Interobserver agreement was fair for visual (kappa, 0.4) and excellent for quantitative analysis (concordance correlation coefficient, 0.80).


A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs.

Key Points

• Chemical shift MRI offers new information about fat within renal tumours.

• Opposed-phase signal decrease can be observed in all renal cortical tumours.

• A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs


Magnetic resonance imaging Oncocytoma Angiomyolipoma Chemical shift imaging Renal cell carcinoma 


  1. 1.
    Kido T, Yamashita Y, Sumi S et al (1997) Chemical shift GRE MRI of renal angiomyolipoma. J Comput Assist Tomogr 21:268–270PubMedCrossRefGoogle Scholar
  2. 2.
    Burdeny DA, Semelka RC, Kelekis NL, Reinhold C, Ascher SM (1997) Small (<1.5 cm) angiomyolipomas of the kidney: characterization by the combined use of in-phase and fat-attenuated MR techniques. Magn Reson Imaging 15:141–145PubMedCrossRefGoogle Scholar
  3. 3.
    Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872PubMedCrossRefGoogle Scholar
  4. 4.
    Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180PubMedCrossRefGoogle Scholar
  5. 5.
    Reuter VE (2006) The pathology of renal epithelial neoplasms. Semin Oncol 33:534–543PubMedCrossRefGoogle Scholar
  6. 6.
    Reuter VE, Tickoo SK (2010) Differential diagnosis of renal tumours with clear cell histology. Pathology 42:374–383PubMedCrossRefGoogle Scholar
  7. 7.
    Tickoo SK, Gopalan A (2008) Pathologic features of renal cortical tumors. Urol Clin North Am 35:551–561PubMedCrossRefGoogle Scholar
  8. 8.
    Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107PubMedGoogle Scholar
  9. 9.
    Yoshimitsu K, Honda H, Kuroiwa T et al (1999) MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging. J Magn Reson Imaging 9:579–585PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchell DG, Kim I, Chang TS et al (1991) Fatty liver. Chemical shift phase-difference and suppression magnetic resonance imaging techniques in animals, phantoms, and humans. Invest Radiol 26:1041–1052PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM (1992) Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology 185:345–351PubMedGoogle Scholar
  12. 12.
    Fujiyoshi F, Nakajo M, Fukukura Y, Tsuchimochi S (2003) Characterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluation. AJR Am J Roentgenol 180:1649–1657PubMedCrossRefGoogle Scholar
  13. 13.
    Jacques AE, Sahdev A, Sandrasagara M et al (2008) Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function. Eur Radiol 18:2885–2892PubMedCrossRefGoogle Scholar
  14. 14.
    Siegelman ES (2012) Adrenal MRI: techniques and clinical applications. J Magn Reson Imaging 36:272–285PubMedCrossRefGoogle Scholar
  15. 15.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshimitsu K, Kakihara D, Irie H et al (2006) Papillary renal carcinoma: diagnostic approach by chemical shift gradient-echo and echo-planar MR imaging. J Magn Reson Imaging 23:339–344PubMedCrossRefGoogle Scholar
  17. 17.
    Nakamura S, Namimoto T, Morita K et al (2012) Characterization of adrenal lesions using chemical shift MRI: comparison between 1.5 tesla and two echo time pair selection at 3.0 tesla MRI. J Magn Reson Imaging 35:95–102PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Christoph A. Karlo
    • 1
  • Olivio F. Donati
    • 1
  • Irene A. Burger
    • 1
  • Junting Zheng
    • 2
  • Chaya S. Moskowitz
    • 2
  • Hedvig Hricak
    • 1
  • Oguz Akin
    • 1
  1. 1.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Epidemiology and BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations