Advertisement

European Radiology

, Volume 23, Issue 6, pp 1738–1744 | Cite as

MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters

  • Christoph A. Karlo
  • Olivio F. Donati
  • Irene A. Burger
  • Junting Zheng
  • Chaya S. Moskowitz
  • Hedvig Hricak
  • Oguz Akin
Urogenital

Abstract

Objectives

To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours.

Methods

A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SIIP, SIOP) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference.

Results

A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P < 0.05). Median chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P < 0.001). Interobserver agreement was fair for visual (kappa, 0.4) and excellent for quantitative analysis (concordance correlation coefficient, 0.80).

Conclusions

A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs.

Key Points

• Chemical shift MRI offers new information about fat within renal tumours.

• Opposed-phase signal decrease can be observed in all renal cortical tumours.

• A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs

Keywords

Magnetic resonance imaging Oncocytoma Angiomyolipoma Chemical shift imaging Renal cell carcinoma 

References

  1. 1.
    Kido T, Yamashita Y, Sumi S et al (1997) Chemical shift GRE MRI of renal angiomyolipoma. J Comput Assist Tomogr 21:268–270PubMedCrossRefGoogle Scholar
  2. 2.
    Burdeny DA, Semelka RC, Kelekis NL, Reinhold C, Ascher SM (1997) Small (<1.5 cm) angiomyolipomas of the kidney: characterization by the combined use of in-phase and fat-attenuated MR techniques. Magn Reson Imaging 15:141–145PubMedCrossRefGoogle Scholar
  3. 3.
    Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. AJR Am J Roentgenol 184:1868–1872PubMedCrossRefGoogle Scholar
  4. 4.
    Kim JK, Kim SH, Jang YJ et al (2006) Renal angiomyolipoma with minimal fat: differentiation from other neoplasms at double-echo chemical shift FLASH MR imaging. Radiology 239:174–180PubMedCrossRefGoogle Scholar
  5. 5.
    Reuter VE (2006) The pathology of renal epithelial neoplasms. Semin Oncol 33:534–543PubMedCrossRefGoogle Scholar
  6. 6.
    Reuter VE, Tickoo SK (2010) Differential diagnosis of renal tumours with clear cell histology. Pathology 42:374–383PubMedCrossRefGoogle Scholar
  7. 7.
    Tickoo SK, Gopalan A (2008) Pathologic features of renal cortical tumors. Urol Clin North Am 35:551–561PubMedCrossRefGoogle Scholar
  8. 8.
    Outwater EK, Bhatia M, Siegelman ES, Burke MA, Mitchell DG (1997) Lipid in renal clear cell carcinoma: detection on opposed-phase gradient-echo MR images. Radiology 205:103–107PubMedGoogle Scholar
  9. 9.
    Yoshimitsu K, Honda H, Kuroiwa T et al (1999) MR detection of cytoplasmic fat in clear cell renal cell carcinoma utilizing chemical shift gradient-echo imaging. J Magn Reson Imaging 9:579–585PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchell DG, Kim I, Chang TS et al (1991) Fatty liver. Chemical shift phase-difference and suppression magnetic resonance imaging techniques in animals, phantoms, and humans. Invest Radiol 26:1041–1052PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell DG, Crovello M, Matteucci T, Petersen RO, Miettinen MM (1992) Benign adrenocortical masses: diagnosis with chemical shift MR imaging. Radiology 185:345–351PubMedGoogle Scholar
  12. 12.
    Fujiyoshi F, Nakajo M, Fukukura Y, Tsuchimochi S (2003) Characterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluation. AJR Am J Roentgenol 180:1649–1657PubMedCrossRefGoogle Scholar
  13. 13.
    Jacques AE, Sahdev A, Sandrasagara M et al (2008) Adrenal phaeochromocytoma: correlation of MRI appearances with histology and function. Eur Radiol 18:2885–2892PubMedCrossRefGoogle Scholar
  14. 14.
    Siegelman ES (2012) Adrenal MRI: techniques and clinical applications. J Magn Reson Imaging 36:272–285PubMedCrossRefGoogle Scholar
  15. 15.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshimitsu K, Kakihara D, Irie H et al (2006) Papillary renal carcinoma: diagnostic approach by chemical shift gradient-echo and echo-planar MR imaging. J Magn Reson Imaging 23:339–344PubMedCrossRefGoogle Scholar
  17. 17.
    Nakamura S, Namimoto T, Morita K et al (2012) Characterization of adrenal lesions using chemical shift MRI: comparison between 1.5 tesla and two echo time pair selection at 3.0 tesla MRI. J Magn Reson Imaging 35:95–102PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Christoph A. Karlo
    • 1
  • Olivio F. Donati
    • 1
  • Irene A. Burger
    • 1
  • Junting Zheng
    • 2
  • Chaya S. Moskowitz
    • 2
  • Hedvig Hricak
    • 1
  • Oguz Akin
    • 1
  1. 1.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Epidemiology and BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations