European Radiology

, Volume 23, Issue 5, pp 1367–1374

T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenohumeral cartilage in asymptomatic volunteers at 3 T

  • Bernd Bittersohl
  • Falk R. Miese
  • Christin Dekkers
  • Hüseyin Senyurt
  • Jörn Kircher
  • Hans-Jörg Wittsack
  • Gerald Antoch
  • Rüdiger Krauspe
  • Christoph Zilkens
Magnetic Resonance



To establish baseline T2* and T1Gd values of glenohumeral cartilage at 3 T.


Forty asymptomatic volunteers (mean age: 24.8 ± 2.2 years) without shoulder abnormalities were included. The MRI protocol comprised a double-echo steady-state (DESS) sequence for morphological cartilage evaluation, a gradient-echo multiecho sequence for T2* assessment, and a gradient-echo dual-flip-angle sequence for T1Gd mapping. Statistical assessment involved a one-way analysis of variance (ANOVA) to identify the differences between various regions of the glenohumeral joint and intraclass correlation (ICC) analysis comparing repetitive T2* and T1Gd measures to assess intra- and interobserver reliability.


Both techniques revealed significant differences between superior and inferior glenohumeral cartilage demonstrating higher T2* (26.2 ms vs. 23.2 ms, P value < 0.001) and T1Gd (750.1 ms vs. 720.2 ms, P value = 0.014) values in the superior regions. No trend was observed in the anterior-posterior measurement (P value range: 0.279–1.000). High intra- and interobserver agreement (ICC value range: 0.895–0.983) was noted for both T2* and T1Gd mapping.


T2* and T1Gd mapping are reliable in the assessment of glenohumeral cartilage. The values from this study can be used for comparison to identify cartilage degeneration in patients suffering from shoulder joint abnormalities.

Key Points

T2* mapping and dGEMRIC are sensitive to collagen degeneration and proteoglycan depletion.

This study aimed to establish baseline T2*/dGEMRIC values of glenohumeral cartilage.

Both techniques revealed significant differences between superior and inferior glenohumeral cartilage.

High intra-/interreader agreement was noted for both T2* mapping and dGEMRIC.

These baseline normal values should be useful when identifying potential degeneration.


MRI T2* mapping dGEMRIC Shoulder Normative data 

Abbreviations and acronyms






Delayed gadolinium-enhanced MRI of cartilage


Gradient echo


Double-echo steady state


Multiecho data image combination


Flip angle


Volumetric interpolated breathhold examination


Region of interest


Analysis of variance


Intraclass correlation


  1. 1.
    Lohmander LS (2004) Markers of altered metabolism in osteoarthritis. J Rheumatol Suppl 70:28–35PubMedGoogle Scholar
  2. 2.
    Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146PubMedCrossRefGoogle Scholar
  3. 3.
    Burstein D, Bashir A, Gray ML (2000) MRI techniques in early stages of cartilage disease. Invest Radiol 35:622–638PubMedCrossRefGoogle Scholar
  4. 4.
    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492PubMedCrossRefGoogle Scholar
  5. 5.
    Williams A, Gillis A, McKenzie C et al (2004) Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. AJR Am J Roentgenol 182:167–172PubMedCrossRefGoogle Scholar
  6. 6.
    Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41PubMedCrossRefGoogle Scholar
  7. 7.
    Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992PubMedGoogle Scholar
  8. 8.
    Tiderius CJ, Jessel R, Kim YJ, Burstein D (2007) Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med 57:803–805PubMedCrossRefGoogle Scholar
  9. 9.
    Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ (2006) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am 88:1540–1548PubMedCrossRefGoogle Scholar
  10. 10.
    Jessel RH, Zilkens C, Tiderius C, Dudda M, Mamisch TC, Kim YJ (2009) Assessment of osteoarthritis in hips with femoroacetabular impingement using delayed gadolinium enhanced MRI of cartilage. J Magn Reson Imaging 30:1110–1115PubMedCrossRefGoogle Scholar
  11. 11.
    Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging 26:974–982PubMedCrossRefGoogle Scholar
  12. 12.
    Mamisch TC, Dudda M, Hughes T, Burstein D, Kim YJ (2008) Comparison of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) using inversion recovery and fast T1 mapping sequences. Magn Reson Med 60:768–773PubMedCrossRefGoogle Scholar
  13. 13.
    Bittersohl B, Hosalkar HS, Haamberg T et al (2009) Reproducibility of dGEMRIC in assessment of hip joint cartilage: a prospective study. J Magn Reson Imaging 30:224–228PubMedCrossRefGoogle Scholar
  14. 14.
    Bittersohl B, Hosalkar HS, Hughes T et al (2009) Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5 T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med 62:896–901PubMedCrossRefGoogle Scholar
  15. 15.
    Nieminen MT, Rieppo J, Toyras J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493PubMedCrossRefGoogle Scholar
  16. 16.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368PubMedCrossRefGoogle Scholar
  17. 17.
    Haacke E, Brown R, Thompson M, Venkatesan R (1999) MRI Physical Principles and Sequence Design. Wiley-Liss, New YorkGoogle Scholar
  18. 18.
    Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558PubMedGoogle Scholar
  19. 19.
    Miese FR, Zilkens C, Holstein A et al (2011) Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol 52:106–110PubMedGoogle Scholar
  20. 20.
    Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology 247:154–161PubMedCrossRefGoogle Scholar
  21. 21.
    Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D (2005) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 52:3528–3535PubMedCrossRefGoogle Scholar
  22. 22.
    Bittersohl B, Hosalkar HS, Werlen S, Trattnig S, Siebenrock KA, Mamisch TC (2011) dGEMRIC and subsequent T1 mapping of the hip at 1.5 Tesla: normative data on zonal and radial distribution in asymptomatic volunteers. J Magn Reson Imaging 34:101–106PubMedCrossRefGoogle Scholar
  23. 23.
    Bittersohl B, Steppacher S, Haamberg T et al (2009) Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). Osteoarthr Cartil/OARS Osteoarthr Res Soc 17:1297–1306CrossRefGoogle Scholar
  24. 24.
    Mamisch TC, Hughes T, Mosher TJ et al (2011) T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skelet RadiolGoogle Scholar
  25. 25.
    Pollard TC, McNally EG, Wilson DC et al (2010) Localized cartilage assessment with three-dimensional dGEMRIC in asymptomatic hips with normal morphology and cam deformity. J Bone Joint Surg Am 92:2557–2569PubMedCrossRefGoogle Scholar
  26. 26.
    Marik W, Apprich S, Welsch GH, Mamisch TC, Trattnig S (2011) Biochemical evaluation of articular cartilage in patients with osteochondrosis dissecans by means of quantitative T2- and T2*-mapping at 3 T MRI: A feasibility study. Eur J RadiolGoogle Scholar
  27. 27.
    Welsch GH, Mamisch TC, Hughes T et al (2008) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43:619–626PubMedCrossRefGoogle Scholar
  28. 28.
    Bittersohl B, Miese FR, Hosalkar HS et al (2012) T2 * mapping of hip joint cartilage in various histological grades of degeneration. Osteoarthr Cartil / OARS Osteoarthr Res SocGoogle Scholar
  29. 29.
    Bittersohl B, Miese FR, Hosalkar HS et al (2012) T2* mapping of acetabular and femoral hip joint cartilage at 3 T: A prospective controlled study. Invest RadiolGoogle Scholar
  30. 30.
    Zilkens C, Miese F, Kim YJ et al (2012) Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3 T: A prospective controlled study. Eur J RadiolGoogle Scholar
  31. 31.
    Wiener E, Hodler J, Pfirrmann CW (2009) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection. Acta Radiol 50:86–92PubMedCrossRefGoogle Scholar
  32. 32.
    Williams A, Mikulis B, Krishnan N, Gray M, McKenzie C, Burstein D (2007) Suitability of T(1Gd) as the dGEMRIC index at 1.5 T and 3.0 T. Magn Reson Med 58:830–834PubMedCrossRefGoogle Scholar
  33. 33.
    Yoshida K, Azuma H (1982) Contents and compositions of glycosaminoglycans in different sites of the human hip joint cartilage. Ann Rheum Dis 41:512–519PubMedCrossRefGoogle Scholar
  34. 34.
    Venn MF (1978) Variation of chemical composition with age in human femoral head cartilage. Ann Rheum Dis 37:168–174PubMedCrossRefGoogle Scholar
  35. 35.
    Xia Y (2000) Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol 35:602–621PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Bernd Bittersohl
    • 1
    • 4
  • Falk R. Miese
    • 2
  • Christin Dekkers
    • 1
  • Hüseyin Senyurt
    • 1
  • Jörn Kircher
    • 3
  • Hans-Jörg Wittsack
    • 2
  • Gerald Antoch
    • 2
  • Rüdiger Krauspe
    • 1
  • Christoph Zilkens
    • 1
  1. 1.Medical Faculty, Department of OrthopedicsUniversity DüsseldorfDüsseldorfGermany
  2. 2.Medical Faculty, Department of Diagnostic and Interventional RadiologyUniversity DüsseldorfDüsseldorfGermany
  3. 3.Department of Orthopedic SurgeryOrthoparc HospitalCologneGermany
  4. 4.Department of Orthopedics, Medical School, DüsseldorfHeinrich-Heine UniversityDüsseldorfGermany

Personalised recommendations