European Radiology

, Volume 23, Issue 5, pp 1429–1442 | Cite as

Partial splenic embolisation using n-butyl cyanoacrylate: intraprocedural evaluation by magnetic resonance imaging

  • Jun Koizumi
  • Chihiro Itou
  • Rick Wray
  • Kazunori Myojin
  • Takeshi Hashimoto
  • Yoshimi Nagata
  • Hiroshi Yamamuro
  • Tomoatsu Tsuji
  • Tamaki Ichikawa
  • Kouichi Shiraishi
  • Tatehiro Kagawa
  • Tetsuya Mine
  • Norihito Watanabe
  • Mitsunori Matsumae
  • Bertrand Janne d’Othée
Vascular-Interventional

Abstract

Objectives

To evaluate the use of diffusion-weighted imaging (DWI) for estimating infarcted splenic volume during partial splenic embolisation (PSE) using n-butyl cyanoacrylate (NBCA).

Methods

Twenty consecutive patients (57.2 ± 11.7 years) with hypersplenism underwent PSE. Intrasplenic branches were embolised using NBCA via a 2.1-French microcatheter aiming at infarction of 50 to 80 % of total splenic volume. Immediately after PSE, signal intensities (SI) of embolised and non-embolised splenic parenchyma were measured on DWI. Semi-automated volumetry (SAV) on DWI was compared with conventional manual volumetry (MV) on contrast-enhanced CT 1 week after PSE. Platelet counts were recorded before and after PSE.

Results

The SI on DWI in the embolised parenchyma decreased significantly (P < 0.01) to 24.7 ± 8.1 % as compared to non-embolised parenchyma. SAV and MV showed a strong correlation (r = 0.913 before PSE, r = 0.935 after PSE, P < 0.01) and significant (P < 0.01) reduction of normal splenic volume was demonstrated on both SAV (71.9 ± 12.4 %) and MV (73.6 ± 9.3 %) after PSE. Based on the initial SAV, three patients (15 %) underwent additional branch embolisation to reach sufficient infarction volume. Platelet counts elevated significantly (522.8 ± 209.1 %, P < 0.01) by 2 weeks after PSE. No serious complication was observed.

Conclusion

Immediate SI changes on DWI after PSE allowed semi-automated splenic volumetry on site.

Key Points

Partial splenic embolisation (PSE) is an important interventional technique for hypersplenism

Diffusion-weighted MR reveals an immediate decrease in signal in the embolised parenchyma

Such signal reduction permits semi-automated splenic volumetry on site.

This allows precise quantification of the amount of parenchyma infarcted, avoiding additional PSE.

Keywords

Diffusion-weighted image Computed tomography Volumetry n-butyl cyanoacrylate Partial splenic embolisation 

References

  1. 1.
    Maddison FE (1973) Embolic therapy of hypersplenism. Invest Radiol 8:280–281CrossRefGoogle Scholar
  2. 2.
    Owman T, Lunderquist A, Alwmark A, Borjesson B (1979) Embolization of the spleen for treatment of splenomegaly and hypersplenism in patients with portal hypertension. Invest Radiol 14:457–464PubMedCrossRefGoogle Scholar
  3. 3.
    Spigos DG, Jonasson O, Mozes M, Capek V (1979) Partial splenic embolization in the treatment of hypersplenism. AJR Am J Roentgenol 132:777–782PubMedCrossRefGoogle Scholar
  4. 4.
    Sangro B, Bilbao I, Herrero I et al (1993) Partial splenic embolization for the treatment of hypersplenism in cirrhosis. Hepatology 18:309–314PubMedCrossRefGoogle Scholar
  5. 5.
    Spies JB, Allison S, Flick P, Cramp M, Bruno J, Jha RC, Ascher SA (2005) Spherical polyvinyl alcohol versus tris-acryl gelatin microspheres for uterine artery embolization for leiomyomas: results of limited randomized comparative study. J Vasc Interv Radiol 16:1431–1437PubMedCrossRefGoogle Scholar
  6. 6.
    Yonemitsu T, Kawai N, Sato M, Tanihata H, Takasaka I, Nakai M, Minamiguchi H, Sahara S, Iwasaki Y, Shima Y, Shinozaki M, Naka T, Shinozaki M (2009) Evaluation of transcatheter arterial embolization with gelatin sponge particles, microcoils, and n-butyl cyanoacrylate for acute arterial bleeding in a coagulopathic condition. J Vasc Interv Radiol 20:1176–1187PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe Y, Todani T, Noda T (1996) Changes in splenic volume after partial splenic embolization in children. J Pediatr Surg 31:241–244PubMedCrossRefGoogle Scholar
  8. 8.
    Warach S, Chien D, Li W, Ronthal M, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723, Erratum in: Neurology 42: 2192PubMedCrossRefGoogle Scholar
  9. 9.
    Matsumae M, Koizumi J, Fukuyama H, Ishizaka H, Mizokami Y, Baba T, Atsumi H, Tsugu A, Oda S, Tanaka Y, Osada T, Imai M, Ishiguro T, Yamamoto M, Tominaga J, Shimoda M, Imai Y (2007) World’s first magnetic resonance imaging/ x-ray/ operating room suite: a significant milestone in the improvement of neurosurgical diagnosis and treatment. J Neurosurg 107:1–8CrossRefGoogle Scholar
  10. 10.
    Matsumae M, Koizumi J, Tsugu A, Inoue G, Nishiyama J, Yoshiyama M, Tominaga J, Atsumi H (2011) Multimodality imaging suite: neo-futuristic diagnostic imaging operating suite marks a significant milestone for innovation in medical technology. Acta Neurochir Suppl 109:215–218PubMedCrossRefGoogle Scholar
  11. 11.
    Lee J, Kim KW, Lee H, Lee SJ, Choi S, Jeong WK, Kye H, Song GW, Hwang S, Lee SG (2011) Semiautomated spleen volumetry with diffusion- weighted MR imaging. Magn Reson Med 2012 Jul;68:305–310Google Scholar
  12. 12.
    Gunther R, Bohl J, Klose K, Anger J (1980) Trans-catheter embolisation of the spleen with butyl-2-cyanoacrylate. Experimental results and clinical application. Rofo 133:158–163PubMedCrossRefGoogle Scholar
  13. 13.
    Kauffman CR, Mahvash A, Kopetz S, Wolff RA, Ensor J, Wallace MJ (2008) Partial splenic embolization for cancer patients with thrombocytopenia requiring systemic chemotherapy. Cancer 112:2283–2288PubMedCrossRefGoogle Scholar
  14. 14.
    Sacks D, McClenny TE, Cardella JF, Lewis CA (2003) Society of interventional radiology clinical practice guidelines. J Vasc Interv Radiol 14:S199–S202PubMedCrossRefGoogle Scholar
  15. 15.
    Vujic I, Lauver JW (1981) Severe complications from partial splenic embolization in patients with liver failure. Br J Radiol 54:492–495PubMedCrossRefGoogle Scholar
  16. 16.
    Wholey MH, Chamorro HA, Rao G, Chapman W (1978) Splenic infarction and spontaneous rupture of the spleen after therapeutic embolization. Cardiovasc Radiol 1:249–253PubMedCrossRefGoogle Scholar
  17. 17.
    Witte CL, Ovitt TW, Van Wyck DB, Witte MH, O’Mara RE, Woolfenden JM (1976) Ischemic therapy in thrombocytopenia from hypersplenism. Arch Surg 111:1115–1121PubMedCrossRefGoogle Scholar
  18. 18.
    Papadimitriou J, Tritakis C, Karatzas G (1976) Treatment of hypersplenism by embolus placement in the splenic artery. Lancet 2:1268–1270PubMedCrossRefGoogle Scholar
  19. 19.
    Van Wyck DB, Witte MH, Witte CL, Thies AC Jr (1980) Critical splenic mass for survival from experimental pneumococcemia. J Surg Res 28:14–17PubMedCrossRefGoogle Scholar
  20. 20.
    Tsapogas MJ, Peabody RA, Karmody AM, Chuntrasakul C, Goussous H, Eckert C (1973) Patho-physiological changes following ischemia of the spleen. Ann Surg 178:179–185PubMedCrossRefGoogle Scholar
  21. 21.
    Ertzner TW, Sandler MP, Kulkarni MV, Patton JA, Mazer MM (1987) Quantitative evaluation of postembolized splenic tissue using technetium-99 m sulfur colloid. Clin Nucl Med 12:281–286PubMedCrossRefGoogle Scholar
  22. 22.
    Noguchi H, Hirai K, Aoki Y, Sakata K, Tanikawa K (1995) Changes in platelet kinetics after a partial splenic arterial embolization in cirrhotic patients with hypersplenism. Hepatology 22:1682–1688PubMedCrossRefGoogle Scholar
  23. 23.
    Link DP, Lantz BM, Seibert JA, Meyers FJ (1989) Partial splenic embolization guided by blood flow measurements. Invest Radiol 24:678–683PubMedCrossRefGoogle Scholar
  24. 24.
    Lewandowski RJ, Wang D, Gehl J, Atassi B, Ryu RK, Sato K et al (2007) A comparison of chemoembolization endpoints using angiographic versus transcatheter intraarterial perfusion/MR imaging monitoring. JVIR 18:1249–1257PubMedCrossRefGoogle Scholar
  25. 25.
    Pelage JP, Cazejust J, Pluot E, Le Dref O, Laurent A, Spies JB et al (2005) Uterine fibroid vascularization and clinical relevance to uterine fibroid embolization. Radiographics 25:S99–S117PubMedCrossRefGoogle Scholar
  26. 26.
    Yoshikawa T, Kawamitsu H, Mitchell DG, Ohno Y, Ku Y, Seo Y, Fujii M, Sugimura K (2006) ADC measurement of abdominal organs and lesions using parallel imaging technique. Am J Roentgenol 187:1521–1530CrossRefGoogle Scholar
  27. 27.
    Maldjian JA, Listerud J, Moonis G, Siddiqi F (2001) Computing diffusion rates in T2-dark haematomas and areas of low T2 signal. Am J Neuroradiol 22:112–118PubMedGoogle Scholar
  28. 28.
    Reeder SB, Holmes AA, McVeigh ER, Forder JR (1999) Simultaneous noninvasive determination of regional myocardial perfusion and oxygen content in rabbits: toward direct measurement of myocardial oxygen consumption at MR imaging. Radiology 212:739–747PubMedGoogle Scholar
  29. 29.
    Hayman LA, Ford JJ, Taber KH, Saleem A, Round ME, Bryan RN (1988) T2 effect of hemoglobin concentration: assessment with in vitro MR spectroscopy. Radiology 168:489–491PubMedGoogle Scholar
  30. 30.
    Zhu K, Meng X, Qian J, Huang M, Li Z, Guan S et al (2009) Partial splenic embolization for hypersplenism in cirrhosis: a long-term outcome in 62 patients. Dig Liver Dis 41:411–416PubMedCrossRefGoogle Scholar
  31. 31.
    Barth KH, Strandberg JD, White RI Jr (1977) Long term follow-up of transcatheter embolization with autologous clot, oxycel and gelfoam in domestic swine. Invest Radiol 12:273–280PubMedCrossRefGoogle Scholar
  32. 32.
    Wright KC, Anderson JH, Gianturco C, Wallace S, Chuang VP (1982) Partial splenic embolization using polyvinyl alcohol foam, dextran, polystyrene, or silicone. An experimental study in dogs. Radiology 142:351–354PubMedGoogle Scholar
  33. 33.
    Aina R, Oliva VL, Therasse E, Perreault P, Bui BT, Dufresne MP, Soulez G (2001) Arterial embolotherapy for upper gastrointestinal hemorrhage: outcome assessment. J Vasc Interv Radiol 12:195–200PubMedCrossRefGoogle Scholar
  34. 34.
    Kunstlinger F, Brunelle F, Chaumont P, Doyon D (1981) Vascular occlusive agents. Am J Roentgenol 136:151–156CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Jun Koizumi
    • 1
  • Chihiro Itou
    • 1
  • Rick Wray
    • 1
  • Kazunori Myojin
    • 1
  • Takeshi Hashimoto
    • 1
  • Yoshimi Nagata
    • 1
  • Hiroshi Yamamuro
    • 1
  • Tomoatsu Tsuji
    • 1
  • Tamaki Ichikawa
    • 1
  • Kouichi Shiraishi
    • 2
  • Tatehiro Kagawa
    • 2
  • Tetsuya Mine
    • 2
  • Norihito Watanabe
    • 2
  • Mitsunori Matsumae
    • 3
  • Bertrand Janne d’Othée
    • 4
  1. 1.Department of Diagnostic RadiologyTokai University School of MedicineIsehara CityJapan
  2. 2.Department of Gastroenterology and HepatologyTokai University School of MedicineIseharaJapan
  3. 3.Department of NeurosurgeryTokai University School of MedicineIseharaJapan
  4. 4.Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations