Advertisement

European Radiology

, Volume 23, Issue 4, pp 975–984 | Cite as

Optimal threshold in CT quantification of emphysema

  • Zhimin Wang
  • Suicheng Gu
  • Joseph K. Leader
  • Shinjini Kundu
  • John R. Tedrow
  • Frank C. Sciurba
  • David Gur
  • Jill M. Siegfried
  • Jiantao Pu
Computed Tomography

Abstract

Objectives

To determine the optimal threshold by quantitatively assessing the extent of emphysema at the level of the entire lung and at the level of individual lobes using a large, diverse dataset of computed tomography (CT) examinations.

Methods

This study comprises 573 chest CT examinations acquired from subjects with different levels of airway obstruction (222 none, 83 mild, 141 moderate, 63 severe and 64 very severe). The extent of emphysema was quantified using the percentage of the low attenuation area (LAA%) divided by the total lung or lobe volume(s). The correlations between the extent of emphysema, and pulmonary functions and the five-category classification were assessed using Pearson and Spearman’s correlation coefficients, respectively. When quantifying emphysema using a density mask, a wide range of thresholds from −850 to −1,000 HU were used.

Results

The highest correlations of LAA% with the five-category classification and PFT measures ranged from −925 to −965 HU for each individual lobe and the entire lung. However, the differences between the highest correlations and those obtained at −950 HU are relatively small.

Conclusion

Although there are variations in the optimal cut-off thresholds for individual lobes, the single threshold of −950 HU is still an acceptable threshold for density-based emphysema quantification.

Key Points

CT is widely used to assess the severity of emphysema

Density mask technique helps clinicians assess the extent of emphysema with CT

A standardised cut-off for density mask analysis at lobe level is desirable

−950 HU is acceptable for density-based emphysema quantification at the lobar level

Keywords

Chronic obstructive pulmonary disease Computed tomography Pulmonary emphysema Density mask Lobe segmentation 

Notes

Acknowledgments

This work was supported in part by grants HL096613, CA090440, HL084948, HL095397, 2012KTCL03-07 to the University of Pittsburgh from the National Institute of Health, the Bonnie J. Addario Lung Cancer Foundation, and the SPORE in Lung Cancer Career Development Program.

References

  1. 1.
    Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, McNitt-Gray MF, Gjertson DW, Estrada F, Tashkin DP, Roth MD (2002) A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med 165:718–723PubMedGoogle Scholar
  2. 2.
    Müller NL, Staples CA, Miller RR, Abboud RT (1988) “Density mask”. An objective method to quantitate emphysema using computed tomography. Chest 94:782–787PubMedCrossRefGoogle Scholar
  3. 3.
    Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC (1995) Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 152:653–657PubMedGoogle Scholar
  4. 4.
    Camiciottoli G, Bartolucci M, Maluccio NM, Moroni C, Mascalchi M, Giuntini C, Pistolesi M (2006) Spirometrically gated high-resolution CT findings in COPD: lung attenuation vs lung function and dyspnea severity. Chest 129:558–564PubMedCrossRefGoogle Scholar
  5. 5.
    Marsh S, Aldington S, Williams MV, Nowitz M, Kingzett-Taylor A, Weatherall M, Shirtcliffe P, Pritchard A, Beasley R (2006) Physiological associations of computerized tomography lung density: a factor analysis. Int J Chron Obstruct Pulmon Dis 1:181–187PubMedGoogle Scholar
  6. 6.
    Madani A, Van Muylem A, Gevenois PA (2010) Pulmonary emphysema: effect of lung volume on objective quantification at thin-section CT. Radiology 257:260–268PubMedCrossRefGoogle Scholar
  7. 7.
    Diaz AA, Bartholmai B, San José Estépar R, Ross J, Matsuoka S, Yamashiro T, Hatabu H, Reilly JJ, Silverman EK, Washko GR (2010) Relationship of emphysema and airway disease assessed by CT to exercise capacity in COPD. Respir Med 104:1145–1151PubMedCrossRefGoogle Scholar
  8. 8.
    Madani A, De Maertelaer V, Zanen J, Gevenois PA (2007) Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification—comparison with Macroscopic and Microscopic Morphometry. Radiology 243:250–257PubMedCrossRefGoogle Scholar
  9. 9.
    Stavngaard T, Shaker SB, Dirksen A (2006) Quantitative assessment of emphysema distribution in smokers and patients with alpha1-antitrypsin deficiency. Respir Med 100:94–100PubMedCrossRefGoogle Scholar
  10. 10.
    Saitoh T, Koba H, Shijubo N, Tanaka H, Sugaya F (2000) Lobar distribution of emphysema in computed tomographic densitometric analysis. Invest Radiol 35:235–243PubMedCrossRefGoogle Scholar
  11. 11.
    Revel MP, Faivre JB, Remy-Jardin M, Deken V, Duhamel A, Marquette CH, Tacelli N, Bakai AM, Remy J (2008) Automated lobar quantification of emphysema in patients with severe COPD. Eur Radiol 18:2723–2730PubMedCrossRefGoogle Scholar
  12. 12.
    Brown MS, Kim HJ, Abtin FG, Strange C, Galperin-Aizenberg M, Pais R, Da Costa IG, Ordookhani A, Chong D, Ni C, McNitt-Gray MF, Tashkin DP, Goldin JG (2012) Emphysema lung lobe volume reduction: effects on the ipsilateral and contralateral lobes. Eur Radiol 22:1547–1555PubMedCrossRefGoogle Scholar
  13. 13.
    Matsuo K, Iwano S, Okada T, Koike W, Naganawa S (2012) 3D-CT Lung volumetry using multidetector row computed tomography: pulmonary function of each anatomic lobe. J Thorac Imaging 27:164–170PubMedCrossRefGoogle Scholar
  14. 14.
    Mohamed Hoesein FA, van Rikxoort E, van Ginneken B, de Jong PA, Prokop M, Lammers JW, Zanen P (2012) Computed tomography-quantified emphysema distribution is associated with lung function decline. Eur Respir J 40:844-850Google Scholar
  15. 15.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang J, Bruesewitz MR, Bartholmai BJ, McCollough CH (2008) Selection of appropriate computed tomographic image reconstruction algorithms for a quantitative multicenter trial of diffuse lung disease. J Comput Assist Tomogr 32:233–237PubMedCrossRefGoogle Scholar
  17. 17.
    Pu J, Roos J, Yi CA, Napel S, Rubin GD, Paik DS (2008) Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32:452–462PubMedCrossRefGoogle Scholar
  18. 18.
    Pu J, Leader JK, Zheng B, Knollmann F, Fuhrman C, Sciurba FC, Gur D (2009) A computational geometry approach to automated pulmonary fissure segmentation in CT examinations. IEEE Trans Med Imaging 28:710–719PubMedCrossRefGoogle Scholar
  19. 19.
    Pu J, Zheng B, Leader JK, Fuhrman C, Knollmann F, Klym A, Gur D (2009) Pulmonary lobe segmentation in CT examinations using implicit surface fitting. IEEE Trans Med Imaging 28:1986–1996PubMedCrossRefGoogle Scholar
  20. 20.
    Nakano Y, Muro S, Sakai H, Hirai T, Chin K, Tsukino M, Nishimura K, Itoh H, Paré PD, Hogg JC, Mishima M (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108PubMedGoogle Scholar
  21. 21.
    Park KJ, Bergin CJ, Clausen JL (1999) Quantitation of emphysema with three-dimensional CT densitometry: comparison with two-dimensional analysis, visual emphysema scores, and pulmonary function test results. Radiology 211:541–547PubMedGoogle Scholar
  22. 22.
    Tanabe N, Muro S, Hirai T, Oguma T, Terada K, Marumo S, Kinose D, Ogawa E, Hoshino Y, Mishima M (2011) Impact of exacerbations on emphysema progression in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:1653–1659PubMedCrossRefGoogle Scholar
  23. 23.
    Camp PG, Coxson HO, Levy RD, Pillai SG, Anderson W, Vestbo J, Kennedy SM, Silverman EK, Lomas DA, Paré PD (2009) Sex differences in emphysema and airway disease in smokers. Chest 136:1480–1488PubMedCrossRefGoogle Scholar
  24. 24.
    Morgan MD (1992) Detection and quantification of pulmonary emphysema by computed tomography: a window of opportunity. Thorax 47:1001–1004PubMedCrossRefGoogle Scholar
  25. 25.
    Yuan R, Mayo JR, Hogg JC, Paré PD, McWilliams AM, Lam S, Coxson HO (2007) The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest 132:617–623PubMedCrossRefGoogle Scholar
  26. 26.
    Pescarolo M, Sverzellati N, Verduri A, Chetta A, Marangio E, De Filippo M, Olivieri D, Zompatori M (2008) How much do GOLD stages reflect CT abnormalities in COPD patients? Radiol Med 113:817–829PubMedCrossRefGoogle Scholar
  27. 27.
    Mohamed Hoesein FA, Zanen P, van Ginneken B, van Klaveren RJ, Lammers JW (2011) Association of the transfer coefficient of the lung for carbon monoxide with emphysema progression in male smokers. Eur Respir J 38:1012–1018PubMedCrossRefGoogle Scholar
  28. 28.
    Mets OM, Murphy K, Zanen P, Gietema HA, Lammers JW, van Ginneken B, Prokop M, de Jong PA (2012) The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease. Eur Radiol 22:120–128PubMedCrossRefGoogle Scholar
  29. 29.
    Gierada DS, Bierhals AJ, Choong CK, Bartel ST, Ritter JH, Das NA, Hong C, Pilgram TK, Bae KT, Whiting BR, Woods JC, Hogg JC, Lutey BA, Battafarano RJ, Cooper JD, Meyers BF, Patterson GA (2010) Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol 17:146–156PubMedCrossRefGoogle Scholar
  30. 30.
    Boedeker KL, McNitt-Gray MF, Rogers SR, Truong DA, Brown MS, Gjertson DW, Goldin JG (2004) Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology 232:295–301PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Zhimin Wang
    • 1
  • Suicheng Gu
    • 1
  • Joseph K. Leader
    • 1
  • Shinjini Kundu
    • 2
  • John R. Tedrow
    • 3
  • Frank C. Sciurba
    • 4
  • David Gur
    • 1
  • Jill M. Siegfried
    • 5
  • Jiantao Pu
    • 1
  1. 1.Department of RadiologyUniversity of PittsburghPittsburghUSA
  2. 2.School of MedicineUniversity of PittsburghPittsburghUSA
  3. 3.Department of Internal MedicineUniversity of PittsburghPittsburghUSA
  4. 4.Division of Pulmonary and Critical Care MedicineUniversity of PittsburghPittsburghUSA
  5. 5.Department of Pharmacology & Chemical BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations