Advertisement

European Radiology

, Volume 23, Issue 4, pp 958–967 | Cite as

Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses

  • Nikolaos Kakouros
  • Frank J. Rybicki
  • Dimitrios Mitsouras
  • Julie M. Miller
Computed Tomography

Abstract

Objectives

Catheter-based angiography is the reference-standard to establish coronary anatomy. While routinely employed clinically, lumen assessment correlates poorly with physiological measures of ischaemia. Moreover, functional studies to identify and localise ischaemia before elective angiography are often not available. This article reviews fractional flow reserve (FFR) and its role in guiding patient management for patients with a potentially haemodynamic significant coronary lesion.

Methods

This review discusses the theory, evidence, indications, and limitations of FFR. Also included are emerging non-invasive imaging FFR surrogates currently under evaluation for accuracy with respect to standard FFR.

Results

Coronary pressure-derived fractional flow reserve (FFR) rapidly assesses the haemodynamic significance of individual coronary artery lesions and can readily be performed in the catheterisation laboratory. The use of FFR has been shown to effectively guide coronary revascularization procedures leading to improved patient outcomes.

Conclusions

FFR is an invaluable modality in guiding coronary disease treatment decisions. It is safe, cost-effective and leads to improved patient outcomes. Non-invasive imaging modalities to assess the physiologic significance of CAD are currently being  developed and evaluated.

Key points

Coronary pressure-derived fractional flow reserve (FFR) is an important adjunct to angiography.

FFR is an invaluable technique in guiding coronary disease treatment decisions.

FFR is safe, cost-effective and leads to improved patient outcomes.

New directions include CT-based non-invasive conventional FFR surrogates for functional lesion significance.

Keywords

Fractional flow reserve Coronary artery disease Cardiac CT Percutaneous coronary intervention Physiology 

References

  1. 1.
    Kushner FG, Hand M, Smith SC et al (2009) 2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients with ST-Elevation Myocardial Infarction (Updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (Updating the 2005 Guideline and 2007 Focused Update). Circulation 120:2271–2306PubMedCrossRefGoogle Scholar
  2. 2.
    King SB, Smith SC, Hirshfeld JW et al (2008) 2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention. Circulation 117:261–295PubMedCrossRefGoogle Scholar
  3. 3.
    Lin GA, Dudley RA, Lucas FL, Malenka DJ, Vittinghoff E, Redberg RF (2008) Frequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA 300:1765–1773PubMedCrossRefGoogle Scholar
  4. 4.
    Otero HJ, Steigner ML, Rybicki FJ (2009) The “post-64” era of coronary CT angiography: understanding new technology from physical principles. Radiol Clin N Am 47:79–90PubMedCrossRefGoogle Scholar
  5. 5.
    Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW (1976) Interobserver variability in coronary angiography. Circulation 53:627–632PubMedCrossRefGoogle Scholar
  6. 6.
    Keane D, Haase J, Slager CJ et al (1995) Comparative validation of quantitative coronary angiography systems. Circulation 91:2174–2183PubMedCrossRefGoogle Scholar
  7. 7.
    Arbab-Zadeh A, Texter J, Ostbye KM et al (2010) Quantification of lumen stenoses with known dimensions by conventional angiography and computed tomography: implications of using conventional angiography as gold standard. Heart 96:1358–1363PubMedCrossRefGoogle Scholar
  8. 8.
    Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224PubMedCrossRefGoogle Scholar
  9. 9.
    Wijns W, Kolh P, Danchin N et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555PubMedCrossRefGoogle Scholar
  10. 10.
    Pijls NH, Van Gelder B, Van der Voort P et al (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193PubMedCrossRefGoogle Scholar
  11. 11.
    Pantely G, Ladley H, Bristow J (1984) Low zero-flow pressure and minimal capacitance effect on diastolic coronary arterial pressure-flow relationships during maximum vasodilation in swine. Circulation 70:485–494PubMedCrossRefGoogle Scholar
  12. 12.
    de Bruyne B, Bartunek J, Sys SU, Pijls NHJ, Heyndrickx GR, Wijns W (1996) Simultaneous coronary pressure and flow velocity measurements in humans: feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation 94:1842–1849PubMedCrossRefGoogle Scholar
  13. 13.
    Fearon WF, Aarnoudse W, Pijls NH et al (2004) Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation 109:2269–2272PubMedCrossRefGoogle Scholar
  14. 14.
    Parham WA, Bouhasin A, Ciaramita JP, Khoukaz S, Herrmann SC, Kern MJ (2004) Coronary hyperemic dose responses of intracoronary sodium nitroprusside. Circulation 109:1236–1243PubMedCrossRefGoogle Scholar
  15. 15.
    Kern MJ, Lerman A, Bech J-W et al (2006) Physiological assessment of coronary artery disease in the cardiac catheterization laboratory. Circulation 114:1321–1341PubMedCrossRefGoogle Scholar
  16. 16.
    Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708PubMedCrossRefGoogle Scholar
  17. 17.
    Wongpraparut N, Yalamanchili V, Pasnoori V et al (2005) Thirty-month outcome after fractional flow reserve-guided versus conventional multivessel percutaneous coronary intervention. Am J Cardiol 96:877–884PubMedCrossRefGoogle Scholar
  18. 18.
    Legalery P, Schiele F, Seronde MF et al (2005) One-year outcome of patients submitted to routine fractional flow reserve assessment to determine the need for angioplasty. Eur Heart J 26:2623–2629PubMedCrossRefGoogle Scholar
  19. 19.
    Bech GJW, De Bruyne B, Pijls NHJ et al (2001) Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis. Circulation 103:2928–2934PubMedCrossRefGoogle Scholar
  20. 20.
    Pijls NH, van Schaardenburgh P, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49:2105–2111PubMedCrossRefGoogle Scholar
  21. 21.
    Pijls NH, Fearon WF, Tonino PA et al (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 56:177–184PubMedCrossRefGoogle Scholar
  22. 22.
    Fearon WF, Bornschein B, Tonino PAL et al (2010) Economic evaluation of fractional flow reserve–guided percutaneous coronary intervention in patients with multivessel disease/clinical perspective. Circulation 122:2545–2550PubMedCrossRefGoogle Scholar
  23. 23.
    Boden WE, O’Rourke RA, Teo KK et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516PubMedCrossRefGoogle Scholar
  24. 24.
    Shaw LJ, Berman DS, Maron DJ et al (2008) Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117:1283–1291PubMedCrossRefGoogle Scholar
  25. 25.
    Kern MJ, Samady H (2010) Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol 55:173–185PubMedCrossRefGoogle Scholar
  26. 26.
    Samady H, Lepper W, Powers ER et al (2006) Fractional flow reserve of infarct-related arteries identifies reversible defects on noninvasive myocardial perfusion imaging early after myocardial infarction. J Am Coll Cardiol 47:2187–2193PubMedCrossRefGoogle Scholar
  27. 27.
    de Bruyne B, Pijls NH, Bartunek J et al (2001) Fractional flow reserve in patients with prior myocardial infarction. Circulation 104:157–162PubMedCrossRefGoogle Scholar
  28. 28.
    Ntalianis A, Sels JW, Davidavicius G et al (2010) Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv 3:1274–1281PubMedCrossRefGoogle Scholar
  29. 29.
    Kern MJ (2012) Conversations in cardiology: using new media to transmit timely medical knowledge. How do you assess the left main stenosis with FFR and IVUS in a patient with multivessel CAD? Catheter Cardiovasc Interv 80:465-471Google Scholar
  30. 30.
    Ciaramita JP, Parham WA, Herrmann S, Khoukaz S, Kern MJ (2004) The influence of obstructive sleep apnea on FFR measurements for coronary lesion assessment. J Interv Cardiol 17:331–337PubMedCrossRefGoogle Scholar
  31. 31.
    Perera D, Biggart S, Postema P et al (2004) Right atrial pressure: can it be ignored when calculating fractional flow reserve and collateral flow index? J Am Coll Cardiol 44:2089–2091PubMedCrossRefGoogle Scholar
  32. 32.
    Claessens TE, Van Herck PL, Matthys KS, Segers P, Vrints CJ, Verdonck PR (2004) Influence of zero flow pressure on fractional flow reserve. Biomech Model Mechanobiol 3:48–55PubMedCrossRefGoogle Scholar
  33. 33.
    Ladenheim ML, Pollock BH, Rozanski A et al (1986) Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 7:464–471PubMedCrossRefGoogle Scholar
  34. 34.
    Leslie WD, Tully SA, Yogendran MS, Ward LM, Nour KA, Metge CJ (2005) Prognostic value of automated quantification of 99mTc-sestamibi myocardial perfusion imaging. J Nucl Med 46:204–211PubMedGoogle Scholar
  35. 35.
    Hachamovitch R, Berman DS, Shaw LJ et al (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543PubMedCrossRefGoogle Scholar
  36. 36.
    Hodgson JM (2010) If you want to stent … do intravascular ultrasound! JACC Cardiovasc Interv 3:818–820PubMedCrossRefGoogle Scholar
  37. 37.
    Nishioka T, Amanullah AM, Luo H et al (1999) Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. J Am Coll Cardiol 33:1870–1878PubMedCrossRefGoogle Scholar
  38. 38.
    Kumamaru KK, Hoppel BE, Mather RT, Rybicki FJ (2010) CT angiography: current technology and clinical use. Radiol Clin N Am 48:213–235, viiPubMedCrossRefGoogle Scholar
  39. 39.
    Ramkumar PG, Mitsouras D, Feldman CL, Stone PH, Rybicki FJ (2009) New advances in cardiac computed tomography. Curr Opin Cardiol 24:596–603PubMedCrossRefGoogle Scholar
  40. 40.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336PubMedCrossRefGoogle Scholar
  41. 41.
    de Graaf FR, Schuijf JD, van Velzen JE et al (2010) Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography to noninvasively assess in-stent restenosis. Investig Radiol 45:331–340Google Scholar
  42. 42.
    Rist C, von Ziegler F, Nikolaou K et al (2006) Assessment of coronary artery stent patency and restenosis using 64-slice computed tomography. Acad Radiol 13:1465–1473PubMedCrossRefGoogle Scholar
  43. 43.
    Hang C-L, Lee Y-W, Guo GB-F et al (2011) Evaluation of coronary artery stent patency by using 64-slice multi-detector computed tomography and conventional coronary angiography: a comparison with intravascular ultrasonography. Int J CardiolGoogle Scholar
  44. 44.
    Meijboom WB, Van Mieghem CA, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 52:636–643PubMedCrossRefGoogle Scholar
  45. 45.
    George RT, Arbab-Zadeh A, Cerci RJ et al (2011) Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 Multicenter Multinational Diagnostic Study. AJR Am J Roentgenol 197:829–837PubMedCrossRefGoogle Scholar
  46. 46.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546PubMedCrossRefGoogle Scholar
  47. 47.
    Hacker M, Rieber J, Schmid R et al (2005) Comparison of Tc-99m sestamibi SPECT with fractional flow reserve in patients with intermediate coronary artery stenoses. J Nucl Cardiol 12:645–654PubMedCrossRefGoogle Scholar
  48. 48.
    Rieber J, Jung P, Erhard I et al (2004) Comparison of pressure measurement, dobutamine contrast stress echocardiography and SPECT for the evaluation of intermediate coronary stenoses. The COMPRESS trial. Int J Cardiovasc Interv 6:142–147Google Scholar
  49. 49.
    Chamuleau SAJ, Meuwissen M, van Eck-Smit BLF et al (2001) Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestambi single-photon emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol 37:1316–1322PubMedCrossRefGoogle Scholar
  50. 50.
    Melikian N, De Bondt P, Tonino P et al (2010) Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv 3:307–314PubMedCrossRefGoogle Scholar
  51. 51.
    Rodes-Cabau J, Candell-Riera J, Angel J et al (2005) Relation of myocardial perfusion defects and nonsignificant coronary lesions by angiography with insights from intravascular ultrasound and coronary pressure measurements. Am J Cardiol 96:1621–1626PubMedCrossRefGoogle Scholar
  52. 52.
    Tani S, Watanabe I, Kobari C et al (2004) Mismatch between results of myocardial fractional flow reserve (FFR) measurements and myocardial perfusion SPECT for identification of the severity of ischemia: pitfall of FFR in patients with prior myocardial infarction. Jpn Heart J 45:867–872PubMedCrossRefGoogle Scholar
  53. 53.
    Bourque JM, Beller GA (2011) Stress myocardial perfusion imaging for assessing prognosis: an update. JACC Cardiovasc Imaging 4:1305–1319PubMedCrossRefGoogle Scholar
  54. 54.
    Jimenez-Navarro M, Alonso-Briales JH, Hernandez Garcia MJ, Rodriguez Bailon I, Gomez-Doblas JJ, de Teresa Galvan E (2001) Measurement of fractional flow reserve to assess moderately severe coronary lesions: correlation with dobutamine stress echocardiography. J Interv Cardiol 14:499–504PubMedCrossRefGoogle Scholar
  55. 55.
    Bartunek J, Marwick TH, Rodrigues ACT et al (1996) Dobutamine-induced wall motion abnormalities: correlations with myocardial fractional flow reserve and quantitative coronary angiography. J Am Coll Cardiol 27:1429–1436PubMedCrossRefGoogle Scholar
  56. 56.
    Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207–2213PubMedCrossRefGoogle Scholar
  57. 57.
    Jogiya R, Kozerke S, Morton G et al (2012) Validation of dynamic 3-dimensional whole heart magnetic resonance myocardial perfusion imaging against fractional flow reserve for the detection of significant coronary artery disease. J Am Coll Cardiol 60:756–765PubMedCrossRefGoogle Scholar
  58. 58.
    Manka R, Paetsch I, Kozerke S et al (2012) Whole-heart dynamic three-dimensional magnetic resonance perfusion imaging for the detection of coronary artery disease defined by fractional flow reserve: determination of volumetric myocardial ischaemic burden and coronary lesion location. Eur Hear J 33:2016–2024CrossRefGoogle Scholar
  59. 59.
    Costa MA, Shoemaker S, Futamatsu H et al (2007) Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 50:514–522PubMedCrossRefGoogle Scholar
  60. 60.
    Steigner ML, Otero HJ, Cai T et al (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90PubMedCrossRefGoogle Scholar
  61. 61.
    Achenbach S, Marwan M, Schepis T et al (2009) High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J Cardiovasc Comput Tomogr 3:117–121PubMedCrossRefGoogle Scholar
  62. 62.
    Lockie T, Ishida M, Perera D et al (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75PubMedCrossRefGoogle Scholar
  63. 63.
    Cury RC, Nieman K, Shapiro MD et al (2008) Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 248:466–475PubMedCrossRefGoogle Scholar
  64. 64.
    Blankstein R, Shturman LD, Rogers IS et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54:1072–1084PubMedCrossRefGoogle Scholar
  65. 65.
    George RT (2009) Computed tomography myocardial perfusion imaging: developmental points of emphasis. Expert Rev Cardiovasc Ther 7:99–101PubMedCrossRefGoogle Scholar
  66. 66.
    George RT, Arbab-Zadeh A, Miller JM et al (2009) Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2:174–182PubMedCrossRefGoogle Scholar
  67. 67.
    Gerber BL, Belge B, Legros GJ et al (2006) Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 113:823–833PubMedCrossRefGoogle Scholar
  68. 68.
    Lardo AC, Cordeiro MA, Silva C et al (2006) Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 113:394–404PubMedCrossRefGoogle Scholar
  69. 69.
    Chow BJ, Kass M, Gagne O et al (2011) Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol 57:1280–1288PubMedCrossRefGoogle Scholar
  70. 70.
    Choi JH, Min JK, Labounty TM et al (2011) Intracoronary transluminal attenuation gradient in coronary CT angiography for determining coronary artery stenosis. JACC Cardiovasc Imaging 4:1149–1157PubMedCrossRefGoogle Scholar
  71. 71.
    Steigner ML, Mitsouras D, Whitmore AG et al (2010) Iodinated contrast opacification gradients in normal coronary arteries imaged with prospectively ECG-gated single heart beat 320-detector row computed tomography. Circ Cardiovasc Imaging 3:179–186PubMedCrossRefGoogle Scholar
  72. 72.
    Davies PF, Shi C, Depaola N, Helmke BP, Polacek DC (2001) Hemodynamics and the focal origin of atherosclerosis: a spatial approach to endothelial structure, gene expression, and function. Ann N Y Acad Sci 947:7–16, discussion 16–17PubMedCrossRefGoogle Scholar
  73. 73.
    Rybicki F, Melchionna S, Mitsouras D et al (2009) Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of endothelial shear stress. Int J Cardiovasc Imaging 25:289–299CrossRefGoogle Scholar
  74. 74.
    van der Giessen AG, Schaap M, Gijsen FJ et al (2010) 3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: a feasibility study. Int J Cardiovasc Imaging 26:781–796PubMedCrossRefGoogle Scholar
  75. 75.
    Chatzizisis YS, Jonas M, Coskun AU et al (2008) Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117:993–1002PubMedCrossRefGoogle Scholar
  76. 76.
    Fischer JJ, Samady H, McPherson JA et al (2002) Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 90:210–215PubMedCrossRefGoogle Scholar
  77. 77.
    Yang C, Bach RG, Zheng J et al (2009) In vivo IVUS-based 3-D fluid-structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis. IEEE Trans Biomed Eng 56:2420–2428PubMedCrossRefGoogle Scholar
  78. 78.
    Kim H, Vignon-Clementel I, Coogan J, Figueroa C, Jansen K, Taylor C (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209PubMedCrossRefGoogle Scholar
  79. 79.
    Melchionna S, Bernaschi M, Succi S et al (2010) Hydrokinetic approach to large-scale cardiovascular blood flow. Comput Phys Commun 181:462–472CrossRefGoogle Scholar
  80. 80.
    Kim HJ, Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Developing computational methods for three-dimensional finite element simulations of coronary blood flow. Finite Elem Anal Des 46:514–525CrossRefGoogle Scholar
  81. 81.
    Kim H, Vignon-Clementel I, Figueroa C et al (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37:2153–2169PubMedCrossRefGoogle Scholar
  82. 82.
    St. Goar F, Min JK, Koo B-K, Taylor C (2012) CTA-derived coronary FFR: the “holy Grail” of noninvasive imaging? Cardiac Interventions Today, March/April, pp 44–48Google Scholar
  83. 83.
    Koo B-K, Erglis A, Doh J-H et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58:1989–1997PubMedCrossRefGoogle Scholar
  84. 84.
    Martus P, Schueler S, Dewey M (2012) Fractional flow reserve estimation by coronary computed tomography angiography. J Am Coll Cardiol 59:1410–1411, author reply 1411PubMedCrossRefGoogle Scholar
  85. 85.
    Min JK, Berman DS, Budoff MJ et al (2011) Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr 5:301–309PubMedCrossRefGoogle Scholar
  86. 86.
    Min JK, Leipsic J, Pencina MJ et al (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308:1237-1245Google Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Nikolaos Kakouros
    • 1
  • Frank J. Rybicki
    • 2
  • Dimitrios Mitsouras
    • 2
  • Julie M. Miller
    • 1
  1. 1.Division of CardiologyJohns Hopkins Hospital and Johns Hopkins UniversityBaltimoreUSA
  2. 2.Applied Imaging Science LaboratoryBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations