Advertisement

European Radiology

, Volume 23, Issue 3, pp 614–622 | Cite as

Diagnostic accuracy of 128-slice dual-source CT coronary angiography: a randomized comparison of different acquisition protocols

  • Lisan A. Neefjes
  • Alexia Rossi
  • Tessa S. S. Genders
  • Koen Nieman
  • Stella L. Papadopoulou
  • Anoeshka S. Dharampal
  • Carl J. Schultz
  • Annick C. Weustink
  • Marcel L. Dijkshoorn
  • Gert-Jan R. ten Kate
  • Admir Dedic
  • Marcel van Straten
  • Filippo Cademartiri
  • M. G. Myriam Hunink
  • Gabriël P. Krestin
  • Pim J. de Feyter
  • Nico R. MolletEmail author
Computed Tomography

Abstract

Objectives

To compare the diagnostic performance and radiation exposure of 128-slice dual-source CT coronary angiography (CTCA) protocols to detect coronary stenosis with more than 50 % lumen obstruction.

Methods

We prospectively included 459 symptomatic patients referred for CTCA. Patients were randomized between high-pitch spiral vs. narrow-window sequential CTCA protocols (heart rate below 65 bpm, group A), or between wide-window sequential vs. retrospective spiral protocols (heart rate above 65 bpm, group B). Diagnostic performance of CTCA was compared with quantitative coronary angiography in 267 patients.

Results

In group A (231 patients, 146 men, mean heart rate 58 ± 7 bpm), high-pitch spiral CTCA yielded a lower per-segment sensitivity compared to sequential CTCA (89 % vs. 97 %, P = 0.01). Specificity, PPV and NPV were comparable (95 %, 62 %, 99 % vs. 96 %, 73 %, 100 %, P > 0.05) but radiation dose was lower (1.16 ± 0.60 vs. 3.82 ± 1.65 mSv, P < 0.001). In group B (228 patients, 132 men, mean heart rate 75 ± 11 bpm), per-segment sensitivity, specificity, PPV and NPV were comparable (94 %, 95 %, 67 %, 99 % vs. 92 %, 95 %, 66 %, 99 %, P > 0.05). Radiation dose of sequential CTCA was lower compared to retrospective CTCA (6.12 ± 2.58 vs. 8.13 ± 4.52 mSv, P < 0.001). Diagnostic performance was comparable in both groups.

Conclusion

Sequential CTCA should be used in patients with regular heart rates using 128-slice dual-source CT, providing optimal diagnostic accuracy with as low as reasonably achievable (ALARA) radiation dose.

Key Points

128-slice dual-source CT coronary angiography offers several different acquisition protocols.

Randomized comparison of protocols reveals an optimal protocol selection strategy.

Appropriate CTCA protocol selection lowers radiation dose, while maintaining high quality.

CTCA protocol selection should be based on individual patient characteristics.

A prospective sequential protocol is preferred for CTCA.

Keywords

Computed tomography Coronary angiography Coronary artery disease Radiation dosage Sensitivity and specificity 

Abbreviations

BMI

body mass index

CAD

coronary artery disease

CCA

conventional coronary angiography

CI

confidence intervals

CTCA

computed tomography coronary angiography

DLP

dose length product

FN

false negative

FP

false positive

LAD

left anterior descending coronary artery

LCX

left circumflex coronary artery

NPV

negative predictive value

NS

non-significant

PPV

positive predictive value

QCA

quantitative coronary angiography

RCA

right coronary artery

TN

true negative

TP

true positive

References

  1. 1.
    von Ballmoos MW, Haring B, Juillerat P, Alkadhi H (2011) Meta-analysis: diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 154:413–420Google Scholar
  2. 2.
    Mowatt G, Cummins E, Waugh N et al (2008) Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess 12:iii–iv, ix–143Google Scholar
  3. 3.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244:419–428PubMedCrossRefGoogle Scholar
  4. 4.
    Weustink AC, Meijboom WB, Mollet NR et al (2007) Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol 50:786–794PubMedCrossRefGoogle Scholar
  5. 5.
    Pugliese F, Mollet NR, Hunink MG et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246:384–393PubMedCrossRefGoogle Scholar
  6. 6.
    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894PubMedCrossRefGoogle Scholar
  7. 7.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRefGoogle Scholar
  8. 8.
    Gerber TC, Carr JJ, Arai AE et al (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119:1056–1065PubMedCrossRefGoogle Scholar
  9. 9.
    Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65:859–867PubMedCrossRefGoogle Scholar
  10. 10.
    Bischoff B, Hein F, Meyer T et al (2010) Comparison of sequential and helical scanning for radiation dose and image quality: results of the Prospective Multicenter Study on Radiation Dose Estimates of Cardiac CT Angiography (PROTECTION) I Study. AJR 194:1495–1499PubMedCrossRefGoogle Scholar
  11. 11.
    Hausleiter J, Martinoff S, Hadamitzky M et al (2010) Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 3:1113–1123PubMedCrossRefGoogle Scholar
  12. 12.
    Halliburton SS, Abbara S, Chen MY et al (2011) SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr 5:198–224PubMedCrossRefGoogle Scholar
  13. 13.
    Sun ML, Lu B, Wu RZ et al (2011) Diagnostic accuracy of dual-source CT coronary angiography with prospective ECG-triggering on different heart rate patients. Eur Radiol 21:1635–1642PubMedCrossRefGoogle Scholar
  14. 14.
    Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Hear J 31:340–346CrossRefGoogle Scholar
  15. 15.
    Alkadhi H, Stolzmann P, Desbiolles L et al (2010) Low-dose, 128-slice, dual-source CT coronary angiography: accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 96:933–938PubMedCrossRefGoogle Scholar
  16. 16.
    Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRefGoogle Scholar
  17. 17.
    Sommer WH, Albrecht E, Bamberg F et al (2010) Feasibility and radiation dose of high-pitch acquisition protocols in patients undergoing dual-source cardiac CT. AJR 195:1306–1312PubMedCrossRefGoogle Scholar
  18. 18.
    Ertel D, Lell MM, Harig F, Flohr T, Schmidt B, Kalender WA (2009) Cardiac spiral dual-source CT with high pitch: a feasibility study. Eur Radiol 19:2357–2362PubMedCrossRefGoogle Scholar
  19. 19.
    Weustink AC, Mollet NR, Pugliese F et al (2008) Optimal electrocardiographic pulsing windows and heart rate: effect on image quality and radiation exposure at dual-source coronary CT angiography. Radiology 248:792–798PubMedCrossRefGoogle Scholar
  20. 20.
    Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40PubMedCrossRefGoogle Scholar
  21. 21.
    Shrimpton P (2004) Assessment of patient dose in CT. http://www.msct.eu/PDF_FILES/Appendix%20paediatric%20CT%20Dosimetry.pdf. Accessed 20 Nov 2008
  22. 22.
    Begg CB, Greenes RA (1983) Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39:207–215PubMedCrossRefGoogle Scholar
  23. 23.
    Hunink MG, Polak JF, Barlan MM, O’Leary DH (1993) Detection and quantification of carotid artery stenosis: efficacy of various Doppler velocity parameters. AJR 160:619–625PubMedGoogle Scholar
  24. 24.
    Weustink AC, Mollet NR, Neefjes LA et al (2010) Diagnostic accuracy and clinical utility of noninvasive testing for coronary artery disease. Ann Intern Med 152:630–639PubMedGoogle Scholar
  25. 25.
    Achenbach S, Goroll T, Seltmann M et al (2011) Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging 4:328–337PubMedCrossRefGoogle Scholar
  26. 26.
    Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817PubMedCrossRefGoogle Scholar
  27. 27.
    Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243PubMedCrossRefGoogle Scholar
  28. 28.
    Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR 195:655–660PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Lisan A. Neefjes
    • 1
    • 2
    • 4
  • Alexia Rossi
    • 1
    • 2
  • Tessa S. S. Genders
    • 2
    • 3
  • Koen Nieman
    • 1
    • 2
  • Stella L. Papadopoulou
    • 1
    • 2
  • Anoeshka S. Dharampal
    • 1
    • 2
  • Carl J. Schultz
    • 1
  • Annick C. Weustink
    • 2
  • Marcel L. Dijkshoorn
    • 2
  • Gert-Jan R. ten Kate
    • 1
    • 2
    • 4
  • Admir Dedic
    • 1
    • 2
  • Marcel van Straten
    • 2
  • Filippo Cademartiri
    • 2
  • M. G. Myriam Hunink
    • 2
    • 3
  • Gabriël P. Krestin
    • 2
  • Pim J. de Feyter
    • 1
    • 2
  • Nico R. Mollet
    • 1
    • 2
    Email author
  1. 1.Department of CardiologyErasmus Medical CenterRotterdamThe Netherlands
  2. 2.Department of RadiologyErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  4. 4.Interuniversity Cardiology Institute of the NetherlandsUtrechtThe Netherlands

Personalised recommendations