Advertisement

European Radiology

, Volume 23, Issue 2, pp 367–374 | Cite as

Changes in measured size of atherosclerotic plaque calcifications in dual-energy CT of ex vivo carotid endarterectomy specimens: effect of monochromatic keV image reconstructions

  • Lorenzo MannelliEmail author
  • Lee M. Mitsumori
  • Marina Ferguson
  • Dongxiang Xu
  • Baocheng Chu
  • Kelley R. Branch
  • William P. Shuman
  • Chun Yuan
Computed Tomography

Abstract

Objective

The aim of this study was to compare the size of the calcifications measured on the different keV images to a histological standard.

Methods

Five ex vivo carotid endarterectomy (CEA) specimens were imaged with a dual-energy CT. CT images were reconstructed at different monochromatic spectral energies (40, 60, 77, 80, 100, 120, 140 keV). Cross-sectional area of the plaque calcifications present on each CT image was measured. The histological calcium areas on each corresponding CEA specimen were traced manually on digitised images of Toluidine Blue/Basic Fuchsin stained plastic sections. The CT images and corresponding histology sections were matched. The CT-derived calcium areas on each keV image were compared to the calcified area measurements by histology.

Results

A total of 107 histology sections were matched to corresponding CT images. The average calcified area per section by histology was 7.6 ± 7 mm2 (range 0–26.4 mm2). There was no significant difference between the calcified areas measured by histology and those measured on CT–virtual monochromatic spectral (VMS) reconstructed images at 77 keV (P = 0.08), 80 keV (P = 0.20) and 100 keV (P = 0.14).

Conclusions

Calcium area measured on the 80 keV image set was most comparable to the amount of calcium measured by histology.

Key Points

Dual-energy computed tomography allows reconstruction of virtual monochromatic images.

Virtual monochromatic images reconstructed at different keVs reveal different atherosclerotic calcification quantification.

Virtual monochromatic images allows better evaluation of calcified atherosclerotic plaques.

Keywords

Dual energy Computed tomography Carotid artery Calcification Monochromatic keV 

Notes

Acknowledgments

Preliminary data were presented at RSNA 2011.

References

  1. 1.
    Gasecki AP, Hachinski VC, Mendel T, Barnett HT (1992) Endarterectomy for symptomatic carotid stenosis: review of the European and North American Symptomatic Carotid Surgery Trials. Nebr Med J 77:121–123PubMedGoogle Scholar
  2. 2.
    North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445–453CrossRefGoogle Scholar
  3. 3.
    Barnett HJ, Taylor DW, Eliasziw M et al (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 339:1415–1425PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson SR, Lin FY, Min JK (2011) Role of coronary artery calcium score and coronary CT angiography in the diagnosis and risk stratification of individuals with suspected coronary artery disease. Curr Cardiol Rep 13:271–279PubMedCrossRefGoogle Scholar
  5. 5.
    Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17PubMedCrossRefGoogle Scholar
  6. 6.
    Rodríguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE (2010) Signal density of left ventricular myocardial segments and impact of beam hardening artifact: implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging 26:345–354PubMedCrossRefGoogle Scholar
  7. 7.
    Wise SW, Hopper KD, Schwartz TA, Ten Have TR, Kasales CJ (1997) Technical factors of CT angiography studied with a carotid artery phantom. AJNR Am J Neuroradiol 18:401–408PubMedGoogle Scholar
  8. 8.
    Elbakri IA, Fessler JA (2002) Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans Med Imaging 21:89–99PubMedCrossRefGoogle Scholar
  9. 9.
    Menvielle N, Goussard Y, Orban D, Soulez G (2005) Reduction of beam-hardening artifacts in X-ray CT. Conf Proc IEEE Eng Med Biol Soc 2:1865–1868PubMedGoogle Scholar
  10. 10.
    Sun H, Qiu S, Lou S, Liu J, Li C, Jiang G (2004) A correction method for nonlinear artifacts in CT imaging. Conf Proc IEEE Eng Med Biol Soc 2:1290–1293PubMedGoogle Scholar
  11. 11.
    Sarikaya B, Lohman B, McKinney AM, Gadani S, Irfan M, Lucato L (2012) Correlation between carotid bifurcation calcium burden on non-enhanced CT and percentage stenosis, as confirmed by digital subtraction angiography. Br J Radiol 85:e284–e292PubMedCrossRefGoogle Scholar
  12. 12.
    Nandalur KR, Baskurt E, Hagspiel KD et al (2006) Carotid artery calcification on CT may independently predict stroke risk. AJR Am J Roentgenol 186:547–552PubMedCrossRefGoogle Scholar
  13. 13.
    Taoka T, Iwasaki S, Nakagawa H et al (2006) Evaluation of arteriosclerotic changes in the intracranial carotid artery using the calcium score obtained on plain cranial computed tomography scan: correlation with angiographic changes and clinical outcome. J Comput Assist Tomogr 30:624–628PubMedCrossRefGoogle Scholar
  14. 14.
    McKinney AM, Casey SO, Teksam M et al (2005) Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography. Neuroradiology 47:1–9PubMedCrossRefGoogle Scholar
  15. 15.
    Sarwar A, Rieber J, Mooyaart EAQ et al (2008) Calcified plaque: measurement of area at thin-section flat-panel CT and 64-section multidetector CT and comparison with histopathologic findings. Radiology 249:301–306PubMedCrossRefGoogle Scholar
  16. 16.
    Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259:257–262PubMedCrossRefGoogle Scholar
  17. 17.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  18. 18.
    Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744PubMedCrossRefGoogle Scholar
  19. 19.
    Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334–339PubMedCrossRefGoogle Scholar
  20. 20.
    Hoffmann U, Kwait DC, Handwerker J, Chan R, Lamuraglia G, Brady TJ (2003) Vascular calcification in ex vivo carotid specimens: precision and accuracy of measurements with multi-detector row CT. Radiology 229:375–381PubMedCrossRefGoogle Scholar
  21. 21.
    Relucenti M, Heyn R, Petruzziello L, Pugliese G, Taurino M, Familiari G (2010) Detecting microcalcifications in atherosclerotic plaques by a simple trichromic staining method for epoxy embedded carotid endarterectomies. Eur J Histochem 54:e33PubMedCrossRefGoogle Scholar
  22. 22.
    Kulkarni NM, Sahani DV, Desai GS, Kalva SP (2012) Indirect computed tomography venography of the lower extremities using single-source dual-energy computed tomography: advantage of low-kiloelectron volt monochromatic images. J Vasc Interv Radiol 23:879–886PubMedCrossRefGoogle Scholar
  23. 23.
    Kerwin W, Xu D, Liu F et al (2007) Magnetic resonance imaging of carotid atherosclerosis: plaque analysis. Top Magn Reson Imaging 18:371–378PubMedCrossRefGoogle Scholar
  24. 24.
    de Weert TT, Ouhlous M, Meijering E et al (2006) In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arterioscler Thromb Vasc Biol 26:2366–2372PubMedCrossRefGoogle Scholar
  25. 25.
    Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH (2011) Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 38:6371–6379PubMedCrossRefGoogle Scholar
  26. 26.
    Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849PubMedCrossRefGoogle Scholar
  27. 27.
    Renker M, Nance JW Jr, Schoepf UJ et al (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260:390–399PubMedCrossRefGoogle Scholar
  28. 28.
    Briley-Saebo KC, Mulder WJ, Mani V et al (2007) Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging 26:460–479PubMedCrossRefGoogle Scholar
  29. 29.
    Miralles M, Merino J, Busto M, Perich X, Barranco C, Vidal-Barraquer F (2006) Quantification and characterization of carotid calcium with multi-detector CT-angiography. Eur J Vasc Endovasc Surg 32:561–567PubMedCrossRefGoogle Scholar
  30. 30.
    Langheinrich AC, Kampschulte M, Crössmann C et al (2009) Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens. J Comput Assist Tomogr 33:517–522PubMedCrossRefGoogle Scholar
  31. 31.
    Knollmann FD, Helmig K, Kapell S et al (2003) Coronary artery calcium scoring: diagnostic accuracy of different software implementations. Invest Radiol 38:761–768PubMedCrossRefGoogle Scholar
  32. 32.
    Galonska M, Ducke F, Kertesz-Zborilova T, Meyer R, Guski H, Knollmann FD (2008) Characterization of atherosclerotic plaques in human coronary arteries with 16-slice multidetector row computed tomography by analysis of attenuation profiles. Acad Radiol 15:222–230PubMedCrossRefGoogle Scholar
  33. 33.
    Rutten A, Isgum I, Prokop M (2011) Calcium scoring with prospectively ECG-triggered CT: using overlapping datasets generated with MPR decreases inter-scan variability. Eur J Radiol 80:83–88PubMedCrossRefGoogle Scholar
  34. 34.
    Waaijer A, Weber M, van Leeuwen MS et al (2009) Grading of carotid artery stenosis with multidetector-row CT angiography: visual estimation or caliper measurements? Eur Radiol 19:2809–2818PubMedCrossRefGoogle Scholar
  35. 35.
    Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171PubMedCrossRefGoogle Scholar
  36. 36.
    Fleischmann D, Boas FE (2011) Computed tomography–old ideas and new technology. Eur Radiol 21:510–517PubMedCrossRefGoogle Scholar
  37. 37.
    Alvarez RE, Macovski A (1976) Energy-selective reconstructions in x-ray computed tomography. Phys Med Biol 21:733–744PubMedCrossRefGoogle Scholar
  38. 38.
    Lehmann LA, Alvarez RE, Macovski A et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667PubMedCrossRefGoogle Scholar
  39. 39.
    Goodsitt MM, Christodoulou EG, Larson SC (2011) Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys 38:2222–2232PubMedCrossRefGoogle Scholar
  40. 40.
    Srichai MB, Lim RP, Donnino R et al (2012) Low-dose, prospective triggered high-pitch spiral coronary computed tomography angiography: comparison with retrospective spiral technique. Acad Radiol 19:554–556PubMedCrossRefGoogle Scholar
  41. 41.
    Srichai-Parsia MB, Lim RP, Mannelli L et al (2011) Coronary computed tomography angiography: comparison between flash spiral and retrospective EKG gating dual source techniques. J Am Coll Cardiol 57:E672CrossRefGoogle Scholar
  42. 42.
    Mannelli L, Mitsumori L, Ferguson M et al (2012) Vascular calcification in ex vivo carotid specimens: correlation with CT calcium measurements calculated using different tube voltages. AJR Am J Roentgenol 198:5 SupplementGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Lorenzo Mannelli
    • 1
    • 2
    Email author
  • Lee M. Mitsumori
    • 1
  • Marina Ferguson
    • 1
  • Dongxiang Xu
    • 1
  • Baocheng Chu
    • 1
  • Kelley R. Branch
    • 1
  • William P. Shuman
    • 1
  • Chun Yuan
    • 1
  1. 1.Departments of RadiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Radiology, University of Washington Medical CenterUniversity of WashingtonSeattleUSA

Personalised recommendations