European Radiology

, Volume 23, Issue 2, pp 476–486 | Cite as

Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings

  • Ling Oei
  • Fernando Rivadeneira
  • Felisia Ly
  • Stephan J. Breda
  • M. Carola Zillikens
  • Albert Hofman
  • André G. Uitterlinden
  • Gabriel P. Krestin
  • Edwin H. G. Oei
Musculoskeletal

Abstract

Background

Osteoporosis is the most common metabolic bone disease; vertebral fractures are the most common osteoporotic fractures.

Methods

Several radiological scoring methods using different criteria for osteoporotic vertebral fractures exist. Quantitative morphometry (QM) uses ratios derived from direct vertebral body height measurements to define fractures. Semi-quantitative (SQ) visual grading is performed according to height and area reduction. The algorithm-based qualitative (ABQ) method introduced a scheme to systematically rule out non-fracture deformities and diagnoses osteoporotic vertebral fractures based on endplate depression. The concordance across methods is currently a matter of debate.

Results

This article reviews the most commonly applied standardised radiographic scoring methods for osteoporotic vertebral fractures, attaining an impartial perspective of benefits and limitations. It provides image examples and discusses aspects that facilitate large-scale application, such as automated image analysis software and different imaging investigations. It also reviews the implications of different fracture definitions for scientific research and clinical practice.

Conclusion

Accurate standardised scoring methods for assessing osteoporotic vertebral fractures are crucial, considering that differences in definition will have implications for patient care and scientific research. Evaluation of the feasibility and concordance among methods will allow establishing their benefits and limitations, and most importantly, optimise their effectiveness for widespread application.

Key Points

Several scoring methods using different criteria for assessing osteoporotic vertebral fractures exist.

Standardised osteoporotic vertebral fracture assessment should be applicable to different radiological investigations.

Accurate assessment of osteoporotic vertebral fractures is essential for proper patient management.

Optimising feasibility of scoring methods enables widespread use in scientific research.

Assessment of concordance between methods is important for application in patient care.

Keywords

Osteoporosis Vertebral Fracture Radiography Diagnosis Epidemiologic Studies 

Abbreviations

BMD

Bone mineral density

QM

Quantitative morphometry

SQ

Semi-quantitative method

SFI

Spinal fracture index

ABQ

Algorithm-based qualitative method

DXA

Dual-emission X-ray absorptiometry

SD

Standard deviation

FRAX

Fracture risk assessment tool

VFA

Vertebral fracture assessment

CT

Computed tomography

MRI

Magnetic resonance imaging

Notes

Acknowledgements

Part of the content of this article was presented as a scientific poster presentation at the American Society for Bone and Mineral Research Annual Meeting in San Diego, CA, USA, from 16–20 September 2011 and as an educational exhibit at the RSNA Annual Meeting in Chicago, IL, USA, from 27 November-2 December 2011.

References

  1. 1.
    Szulc P, Bouxsein ML (2011) Overview of osteoporosis: Epidemiology and clinical management. Vertebral Fracture Initiative Resource Document PART IGoogle Scholar
  2. 2.
    Burger H, Van Daele PL, Grashuis K et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157PubMedCrossRefGoogle Scholar
  3. 3.
    Gold DT (1996) The clinical impact of vertebral fractures: quality of life in women with osteoporosis. Bone 18:185S–189SPubMedCrossRefGoogle Scholar
  4. 4.
    Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800PubMedGoogle Scholar
  5. 5.
    Oleksik A, Lips P, Dawson A et al (2000) Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J Bone Miner Res 15:1384–1392PubMedCrossRefGoogle Scholar
  6. 6.
    Oleksik AM, Ewing S, Shen W, van Schoor NM, Lips P (2005) Impact of incident vertebral fractures on health related quality of life (HRQOL) in postmenopausal women with prevalent vertebral fractures. Osteoporos Int 16:861–870PubMedCrossRefGoogle Scholar
  7. 7.
    Ross PD (1997) Clinical consequences of vertebral fractures. Am J Med 103:30S–42S, discussion 42S-43SPubMedCrossRefGoogle Scholar
  8. 8.
    Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521PubMedCrossRefGoogle Scholar
  9. 9.
    Ensrud KE, Thompson DE, Cauley JA et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriatr Soc 48:241–249PubMedGoogle Scholar
  10. 10.
    Ström O, Borgström F, Kanis JA et al (2011) Osteoporosis: burden, health care provision and opportunities in the EU. Arch Osteoporos. doi: 10.1007/s11657-011-0060-1:
  11. 11.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  12. 12.
    Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662PubMedCrossRefGoogle Scholar
  13. 13.
    van der Klift M, de Laet CE, McCloskey EV et al (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 19:1172–1180PubMedCrossRefGoogle Scholar
  14. 14.
    WHO (1994) Assessment of fracture risk and its implication to screening for postmenopausal osteoporosis: Technical report series 843. World Health Organization, GenevaGoogle Scholar
  15. 15.
    Kelsey JL, Samelson EJ (2009) Variation in risk factors for fractures at different sites. Curr Osteoporos Rep 7:127–133PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMedCrossRefGoogle Scholar
  17. 17.
    Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of osteoporotic fractures research group. J Bone Miner Res 14:821–828PubMedCrossRefGoogle Scholar
  18. 18.
    McCloskey EV, Vasireddy S, Threlkeld J et al (2008) Vertebral fracture assessment (VFA) with a densitometer predicts future fractures in elderly women unselected for osteoporosis. J Bone Miner Res 23:1561–1568PubMedCrossRefGoogle Scholar
  19. 19.
    Melton LJ 3rd, Atkinson EJ, Cooper C, O’Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221PubMedCrossRefGoogle Scholar
  20. 20.
    Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRefGoogle Scholar
  21. 21.
    Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW (2009) Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol 69:179–183PubMedCrossRefGoogle Scholar
  22. 22.
    Lewiecki EM, Laster AJ (2006) Clinical review: clinical applications of vertebral fracture assessment by dual-energy x-ray absorptiometry. J Clin Endocrinol Metab 91:4215–4222PubMedCrossRefGoogle Scholar
  23. 23.
    Cooper C, Shah S, Hand DJ et al (1991) Screening for vertebral osteoporosis using individual risk factors. The multicentre vertebral fracture study group. Osteoporos Int 2:48–53PubMedCrossRefGoogle Scholar
  24. 24.
    Delmas PD, van de Langerijt L, Watts NB et al (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20:557–563PubMedCrossRefGoogle Scholar
  25. 25.
    Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582PubMedCrossRefGoogle Scholar
  26. 26.
    Bartalena T, Giannelli G, Rinaldi MF et al (2009) Prevalence of thoracolumbar vertebral fractures on multidetector CT: underreporting by radiologists. Eur J Radiol 69:555–559PubMedCrossRefGoogle Scholar
  27. 27.
    Kim N, Rowe BH, Raymond G et al (2004) Underreporting of vertebral fractures on routine chest radiography. AJR Am J Roentgenol 182:297–300PubMedGoogle Scholar
  28. 28.
    Guglielmi G, Diacinti D, van Kuijk C et al (2008) Vertebral morphometry: current methods and recent advances. Eur Radiol 18:1484–1496PubMedCrossRefGoogle Scholar
  29. 29.
    Almen A, Tingberg A, Besjakov J, Mattsson S (2004) The use of reference image criteria in X-ray diagnostics: an application for the optimisation of lumbar spine radiographs. Eur Radiol 14:1561–1567PubMedCrossRefGoogle Scholar
  30. 30.
    Hurxthal LM (1968) Measurement of anterior vertebral compressions and biconcave vertebrae. Am J Roentgenol Radium Ther Nucl Med 103:635–644PubMedGoogle Scholar
  31. 31.
    Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215PubMedCrossRefGoogle Scholar
  32. 32.
    McCloskey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147PubMedCrossRefGoogle Scholar
  33. 33.
    Davies KM, Recker RR, Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341–349PubMedCrossRefGoogle Scholar
  34. 34.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896PubMedCrossRefGoogle Scholar
  37. 37.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259PubMedCrossRefGoogle Scholar
  38. 38.
    Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202PubMedCrossRefGoogle Scholar
  39. 39.
    The European Prospective Osteoporosis (EPOS) Study Group (2002) The relationship between bone density and incident vertebral fracture in men and women. J Bone Miner Res 17:2214–2221CrossRefGoogle Scholar
  40. 40.
    Lorente-Ramos R, Azpeitia-Arman J, Munoz-Hernandez A, Garcia-Gomez JM, Diez-Martinez P, Grande-Barez M (2011) Dual-energy x-ray absorptiometry in the diagnosis of osteoporosis: a practical guide. AJR Am J Roentgenol 196:897–904PubMedCrossRefGoogle Scholar
  41. 41.
    Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44:734–743PubMedCrossRefGoogle Scholar
  42. 42.
    Cauley JA, Hochberg MC, Lui LY et al (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767PubMedCrossRefGoogle Scholar
  43. 43.
    Kolta S, Quiligotti S, Ruyssen-Witrand A et al (2008) In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method. Osteoporos Int 19:185–192PubMedCrossRefGoogle Scholar
  44. 44.
    Buehring B, Krueger D, Checovich M et al (2010) Vertebral fracture assessment: impact of instrument and reader. Osteoporos Int 21:487–494PubMedCrossRefGoogle Scholar
  45. 45.
    Schousboe JT, Debold CR (2006) Reliability and accuracy of vertebral fracture assessment with densitometry compared to radiography in clinical practice. Osteoporos Int 17:281–289PubMedCrossRefGoogle Scholar
  46. 46.
    Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714PubMedCrossRefGoogle Scholar
  47. 47.
    Samelson EJ, Christiansen BA, Demissie S et al (2011) Reliability of vertebral fracture assessment using multidetector CT lateral scout views: the Framingham Osteoporosis Study. Osteoporos Int 22:1123–1131PubMedCrossRefGoogle Scholar
  48. 48.
    Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 469:2179–2193PubMedCrossRefGoogle Scholar
  49. 49.
    Krug R, Burghardt AJ, Majumdar S, Link TM (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48:601–621PubMedCrossRefGoogle Scholar
  50. 50.
    Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17PubMedCrossRefGoogle Scholar
  51. 51.
    Van Goethem JW, Maes M, Ozsarlak O, van den Hauwe L, Parizel PM (2005) Imaging in spinal trauma. Eur Radiol 15:582–590PubMedCrossRefGoogle Scholar
  52. 52.
    Wilmink JT (1999) MR imaging of the spine: trauma and degenerative disease. Eur Radiol 9:1259–1266PubMedCrossRefGoogle Scholar
  53. 53.
    Drevelegas A, Chourmouzi D, Boulogianni G, Sofroniadis I (2003) Imaging of primary bone tumors of the spine. Eur Radiol 13:1859–1871PubMedCrossRefGoogle Scholar
  54. 54.
    Erlemann R (2006) Imaging and differential diagnosis of primary bone tumors and tumor-like lesions of the spine. Eur J Radiol 58:48–67PubMedCrossRefGoogle Scholar
  55. 55.
    Brett A, Miller CG, Hayes CW et al (2009) Development of a clinical workflow tool to enhance the detection of vertebral fractures: accuracy and precision evaluation. Spine (Phila Pa 1976) 34:2437–2443CrossRefGoogle Scholar
  56. 56.
    Guglielmi G, Palmieri F, Placentino MG, D’Errico F, Stoppino LP (2009) Assessment of osteoporotic vertebral fractures using specialized workflow software for 6-point morphometry. Eur J Radiol 70:142–148PubMedCrossRefGoogle Scholar
  57. 57.
    Roberts MG, Oh T, Pacheco EM, Mohankumar R, Cootes TF, Adams JE (2012) Semi-automatic determination of detailed vertebral shape from lumbar radiographs using active appearance models. Osteoporos Int 23:655–664PubMedCrossRefGoogle Scholar
  58. 58.
    Kim YM, Demissie S, Eisenberg R, Samelson EJ, Kiel DP, Bouxsein ML (2011) Intra-and inter-reader reliability of semi-automated quantitative morphometry measurements and vertebral fracture assessment using lateral scout views from computed tomography. Osteoporos Int 22:2677–2688PubMedCrossRefGoogle Scholar
  59. 59.
    Link TM, Guglielmi G, van Kuijk C, Adams JE (2005) Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol 15:1521–1532PubMedCrossRefGoogle Scholar
  60. 60.
    Sørensen (1964) Scheuermann’s Juvenile Kyphosis: Clinical Appearances, Radiography, Aetiology, and Prognosis. MunksgaardGoogle Scholar
  61. 61.
    Sachs B, Bradford D, Winter R, Lonstein J, Moe J, Willson S (1987) Scheuermann kyphosis. Follow-up of Milwaukee-brace treatment. J Bone Joint Surg Am 69:50–57PubMedGoogle Scholar
  62. 62.
    Bensch FV, Kiuru MJ, Koivikko MP, Koskinen SK (2004) Spine fractures in falling accidents: analysis of multidetector CT findings. Eur Radiol 14:618–624PubMedCrossRefGoogle Scholar
  63. 63.
    Ferrar L, Jiang G, Schousboe JT, DeBold CR, Eastell R (2008) Algorithm-based qualitative and semiquantitative identification of prevalent vertebral fracture: agreement between different readers, imaging modalities, and diagnostic approaches. J Bone Miner Res 23:417–424PubMedCrossRefGoogle Scholar
  64. 64.
    Wu CY, Li J, Jergas M, Genant HK (1995) Comparison of semiquantitative and quantitative techniques for the assessment of prevalent and incident vertebral fractures. Osteoporos Int 5:354–370PubMedCrossRefGoogle Scholar
  65. 65.
    Black DM, Palermo L, Nevitt MC et al (1995) Comparison of methods for defining prevalent vertebral deformities: the Study of Osteoporotic Fractures. J Bone Miner Res 10:890–902PubMedCrossRefGoogle Scholar
  66. 66.
    Kim YM, Demissie S, Genant HK et al (2012) Identification of prevalent vertebral fractures using CT lateral scout views: a comparison of semi-automated quantitative vertebral morphometry and radiologist semi-quantitative grading. Osteoporos Int 23:1007–1016PubMedCrossRefGoogle Scholar
  67. 67.
    Ferrar L, Jiang G, Cawthon PM et al (2007) Identification of vertebral fracture and non-osteoporotic short vertebral height in men: the MrOS study. J Bone Miner Res 22:1434–1441PubMedCrossRefGoogle Scholar
  68. 68.
    Genant HK, Jergas M, Palermo L et al (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 11:984–996PubMedCrossRefGoogle Scholar
  69. 69.
    Melton LJ 3rd, Wenger DE, Atkinson EJ et al (2006) Influence of baseline deformity definition on subsequent vertebral fracture risk in postmenopausal women. Osteoporos Int 17:978–985PubMedCrossRefGoogle Scholar
  70. 70.
    Black DM, Palermo L, Nevitt MC, Genant HK, Christensen L, Cummings SR (1999) Defining incident vertebral deformity: a prospective comparison of several approaches. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:90–101PubMedCrossRefGoogle Scholar
  71. 71.
    Ziegler R, Scheidt-Nave C, Leidig-Bruckner G (1996) What is a vertebral fracture? Bone 18:169S–177SPubMedCrossRefGoogle Scholar
  72. 72.
    Hofman A, van Duijn CM, Franco OH et al (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26:657–686PubMedCrossRefGoogle Scholar
  73. 73.
    Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH (2007) Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int 18:761–770PubMedCrossRefGoogle Scholar
  74. 74.
    Chen JS, Sambrook PN (2011) Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8:81–91PubMedCrossRefGoogle Scholar
  75. 75.
    Finigan J, Greenfield DM, Blumsohn A et al (2008) Risk factors for vertebral and nonvertebral fracture over 10 years: a population-based study in women. J Bone Miner Res 23:75–85PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Ling Oei
    • 1
    • 2
    • 3
    • 5
  • Fernando Rivadeneira
    • 1
    • 2
    • 3
    • 6
  • Felisia Ly
    • 1
    • 2
    • 5
  • Stephan J. Breda
    • 1
    • 2
    • 5
  • M. Carola Zillikens
    • 1
    • 3
    • 7
  • Albert Hofman
    • 2
    • 3
  • André G. Uitterlinden
    • 1
    • 2
    • 3
    • 8
  • Gabriel P. Krestin
    • 4
  • Edwin H. G. Oei
    • 4
  1. 1.Department of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
  2. 2.Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA)RotterdamThe Netherlands
  4. 4.Department of RadiologyErasmus Medical CenterRotterdamThe Netherlands
  5. 5.Departments of Internal Medicine and EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  6. 6.Departments of Internal Medicine and EpidemiologyErasmus Medical CenterRotterdamThe Netherlands
  7. 7.Department of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
  8. 8.Departments of Internal Medicine and EpidemiologyErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations