European Radiology

, Volume 23, Issue 2, pp 541–550 | Cite as

Benign versus metastatic vertebral compression fractures: combined diffusion-weighted MRI and MR spectroscopy aids differentiation

  • Helmut Rumpel
  • Yi Chong
  • David A. Porter
  • Ling L. Chan
Neuro

Abstract

Objectives

To determine the residual lipid fraction in fractured vertebrae by 1H MR spectroscopy (MRS) and its confounding effect on differentiating benign from metastatic compression fractures of the spine using apparent diffusion coefficient (ADC) obtained by diffusion-weighted read-out-segmented echo-planar imaging.

Methods

Fifty-two patients presenting with back pain and/or vertebral compression fractures related to different degrees of acute trauma, osteoporosis or clinically known metastatic disease underwent imaging at 1.5 T using (a) single-voxel MRS for water and lipid compositions over the fractured vertebral marrow, and (b) DWI at b = 0 and 650 s/mm2 to compute the ADC values.

Results

In 46 fractured vertebrae, the amount of lipid displaced was variable. In low-impact trauma, lipid was either displaced partially (ADC of 1.60 ± 0.20 × 10−3 mm2/s) or almost totally with a higher ADC (2.20 ± 0.27 × 10−3 mm2/s). In acute high-impact trauma, the lipid fraction was negligible, yet an intermediate ADC was observed. In tumour infiltration, ADC was also intermediate (1.22 ± 0.14 × 10−3 mm2/s) despite a negligible lipid fraction. The ROC curve yielded a diagnostic accuracy of 0.944.

Conclusion

ADC-MRS analysis provides knowledge of the residual lipid fraction in fractured vertebrae that could aid in the differentiation between benign and metastatic vertebral fractures in low-impact trauma.

Key Points

Trauma causes displacement of lipid in normal vertebral bone marrow.

A high content of remaining lipids confounds and lowers the ADC.

ADC alone is ambiguous in differentiating osteoporotic and neoplastic vertebral fractures.

Differentiation is aided by using ADC in combination with MRS.

Diffusion-weighted read-out-segmented echo-planar imaging improves spinal image quality.

Keywords

Vertebral compression fractures MR spectroscopy EPI DWI Read-out-segmentation 

Abbreviations

DW-rs-EPI

diffusion-weighted read-out-segmented echo-planar imaging

DW-ss-EPI

diffusion-weighted single-shot echo-planar imaging

References

  1. 1.
    Vaccaro AR, Kim DH, Brodke DS et al (2003) Diagnosis and management of thoracolumbar spine fractures. J Bone Joint Surg Am 85:2456–2470Google Scholar
  2. 2.
    Falcone S (2002) Diffusion-weighted imaging in the distinction of benign from metastatic vertebral compression fractures: is this a numbers game? Am J Neuroradiol 23:5–6PubMedGoogle Scholar
  3. 3.
    Baur A, Stabler A, Bruning R et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356PubMedGoogle Scholar
  4. 4.
    Balliu E, Vilanova JC, Peláez I et al (2009) Diagnostic value of apparent diffusion coefficients to differentiate benign from malignant vertebral bone marrow lesions. Eur J Radiol 69:560–566PubMedCrossRefGoogle Scholar
  5. 5.
    Bammer R, Herneth AM, Maier SE et al (2003) Line scan diffusion imaging of the spine. Am J Neuroradiol 24:5–12PubMedGoogle Scholar
  6. 6.
    Baur A, Huber A, Ertl-Wagner B et al (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. Am J Neuroradiol 22:366–372PubMedGoogle Scholar
  7. 7.
    Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. Am J Neuroradiol 23:165–170PubMedGoogle Scholar
  8. 8.
    Rumpel H, Chan LL, Chan LP, Png MA, Tan RK, Lim WE (2006) Vertebrae adjacent to spinal bone lesion are inconsistent reference markers: a magnetic resonance spectroscopic viewpoint. J Magn Reson Imaging 23:574–577PubMedCrossRefGoogle Scholar
  9. 9.
    Castillo M (2003) Diffusion-weighted imaging of the spine: is it reliable? Am J Neuroradiol 24:1251–1253PubMedGoogle Scholar
  10. 10.
    Shah LM, Hanrahan CJ (2011) MRI of spinal bone marrow: part 1, techniques and normal age-related appearances. Am J Roentgenol 197:1298–1308CrossRefGoogle Scholar
  11. 11.
    Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268PubMedCrossRefGoogle Scholar
  12. 12.
    Schellinger D, Lin CS, Lim J, Hatipoglu HG et al (2004) Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. Am J Roentgenol 183:1761–1765Google Scholar
  13. 13.
    Ragab Y, Emad Y, Gheita T et al (2009) Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of phase MR imaging. Eur J Radiol 72:125–133PubMedCrossRefGoogle Scholar
  14. 14.
    Swartz PG, Roberts CC (2009) Radiological reasoning: bone marrow changes on MRI. Am J Roentgenol 193:S1–S4CrossRefGoogle Scholar
  15. 15.
    Porter DA, Heidemann RM (2009) High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 62:468–475PubMedCrossRefGoogle Scholar
  16. 16.
    Lenchik L, Rogers LF, Delmas PD et al (2004) Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. Am J Roentgenol 183:949–958Google Scholar
  17. 17.
    Miller KL, Pauly JM (2003) Non-linear phase correction for navigated diffusion imaging. Magn Reson Med 50:343–353PubMedCrossRefGoogle Scholar
  18. 18.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  19. 19.
    Chenevert TL, Galbán CJ, Londy FJ et al (2011) Icewater for quality control of diffusion measurements in multi-center trials. Proc Int Soc Mag Reson Med 19:844Google Scholar
  20. 20.
    Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14:260–264PubMedCrossRefGoogle Scholar
  21. 21.
    Herneth AM, Friedrich K, Weidekamm C et al (2005) Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol 55:74–83PubMedCrossRefGoogle Scholar
  22. 22.
    Tehranzadeh J, Tao C (2004) Advances in MR imaging of vertebral collapse. Semin Ultrasound CT MRI 25:440–460CrossRefGoogle Scholar
  23. 23.
    Rumpel H, Lim WE, Chang HM et al (2003) Is myo-inositol a measure of glial swelling after stroke? A magnetic resonance study. J Magn Reson Imaging 17:11–19PubMedCrossRefGoogle Scholar
  24. 24.
    Gupta RK, Sinha U, Cloughesy TF, Alger JR (1999) Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med 41:2–7PubMedCrossRefGoogle Scholar
  25. 25.
    Myers E, Wilson SE (1997) Biomechanics of osteoporosis and vertebral fracture. Spine 22:25S–31SPubMedCrossRefGoogle Scholar
  26. 26.
    Tang GY, Lv ZW, Tang RB et al (2010) Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol 65:377–381PubMedCrossRefGoogle Scholar
  27. 27.
    Voormolen MH, van Rooij WJ, van der Graaf Y et al (2006) Bone marrow edema in osteoporotic vertebral compression fractures after percutaneous vertebroplasty and relation with clinical outcome. Am J Neuroradiol 27:983–988PubMedGoogle Scholar
  28. 28.
    Ratcliffe JF (1980) The arterial anatomy of the adult human lumbar vertebral body: a microarteriographic study. J Anat 131:57–79PubMedGoogle Scholar
  29. 29.
    Atlas SW, DuBois P, Singer MB et al (2000) Diffusion measurements in intracranial haematomas: implications for MR imaging of acute stroke. Am J Neuroradiol 21:1190–1194PubMedGoogle Scholar
  30. 30.
    Maldjian J, Listerud J (2004) Diffusion findings in blood clot: the last word? Am J Neuroradiol 25:157–158Google Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Helmut Rumpel
    • 1
  • Yi Chong
    • 1
  • David A. Porter
    • 2
  • Ling L. Chan
    • 1
  1. 1.Department Diagnostic RadiologySingapore General HospitalSingaporeSingapore
  2. 2.Siemens AG Healthcare SectorErlangenGermany

Personalised recommendations