European Radiology

, Volume 23, Issue 2, pp 496–504 | Cite as

Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage (dGEMRIC) of the knee at 3.0 T in patients with early stage osteoarthritis

  • J. van Tiel
  • E. E. Bron
  • C. J. Tiderius
  • P. K. Bos
  • M. Reijman
  • S. Klein
  • J. A. N. Verhaar
  • G. P. Krestin
  • H. Weinans
  • G. Kotek
  • E. H. G. Oei



To assess the reproducibility of 3D delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 3 T in early stage knee osteoarthritis (OA) patients.


In 20 patients, 3D dGEMRIC at 3 T was acquired twice within 7 days. To correct for patient motion during acquisition, all images were rigidly registered in 3D. Eight anatomical cartilage ROIs were analysed on both images of each patient. Capability of dGEMRIC to yield T1 maps that reproducibly distinguish spatial differences in cartilage quality was assessed in two ROIs within a single slice in each patient. Reproducibility was assessed using ICCs and Bland-Altman plots.


ICCs ranged from 0.87 to 0.95, indicating good reproducibility. T1 maps revealed reproducible spatial differences in cartilage quality (ICC 0.79). Based on the Bland-Altman plots, we defined a threshold of 95 ms to determine if a change in dGEMRIC outcome in longitudinal research was statistically significant.


3D knee dGEMRIC at 3 T combined with 3D image registration is a highly reproducible measure of cartilage quality in early stage OA. Therefore, dGEMRIC may be a valuable tool in the non-invasive evaluation of cartilage quality changes in longitudinal research in patients with early stage OA and focal cartilage defects.

Key Points

Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) can assess osteoarthritis

dGEMRIC yields highly reproducible T1 values in early stage osteoarthritic patients

A threshold was established to determine significant changes in dGEMRIC outcomes

dGEMRIC can be used to evaluate cartilage quality in longitudinal research


Quantitative MR imaging Articular cartilage Knee osteoarthritis Reproducibility of results dGEMRIC 

Abbreviations and acronyms


Anterior cruciate ligament tear


Delayed gadolinium-enhanced magnetic resonance imaging of cartilage


Intraclass correlation coefficient




Posterior non-weight-bearing cartilage of the femoral condyle


Regions of interest


Sulphated glycosaminoglycan


Inversion time


Anterior weight-bearing cartilage of the femoral condyle


Posterior weight-bearing cartilage of the femoral condyle


Weight-bearing cartilage of the tibial plateau



Prof. G.P. Krestin is a consultant to GE and has a collaboration contract with them


  1. 1.
    Buckwalter JA, Saltzman C, Brown T (2004) The impact of osteoarthritis: implications for research. Clin Orthop Relat Res 427(Suppl):S6–S15PubMedCrossRefGoogle Scholar
  2. 2.
    Hermans J, Koopmanschap MA, Bierma-Zeinstra SM et al (2012) Productivity costs and medical costs among working patients with knee osteoarthritis. Arthritis Care Res (Hoboken) 64:853–861CrossRefGoogle Scholar
  3. 3.
    Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656PubMedGoogle Scholar
  4. 4.
    Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502PubMedCrossRefGoogle Scholar
  5. 5.
    Hunter DJ (2011) Pharmacologic therapy for osteoarthritis–the era of disease modification. Nat Rev Rheumatol 7:13–22PubMedCrossRefGoogle Scholar
  6. 6.
    Guermazi A, Roemer FW, Burstein D, Hayashi D (2011) Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Res Ther 13:247PubMedCrossRefGoogle Scholar
  7. 7.
    Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865PubMedCrossRefGoogle Scholar
  8. 8.
    Tiderius CJ, Olsson LE, Leander P, Ekberg O, Dahlberg L (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49:488–492PubMedCrossRefGoogle Scholar
  9. 9.
    Tiderius CJ, Olsson LE, Nyquist F, Dahlberg L (2005) Cartilage glycosaminoglycan loss in the acute phase after an anterior cruciate ligament injury: delayed gadolinium-enhanced magnetic resonance imaging of cartilage and synovial fluid analysis. Arthritis Rheum 52:120–127PubMedCrossRefGoogle Scholar
  10. 10.
    Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: Preliminary results. J Magn Reson Imaging 26:974–982PubMedCrossRefGoogle Scholar
  11. 11.
    Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L (2010) Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 38:943–949PubMedCrossRefGoogle Scholar
  12. 12.
    Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748PubMedCrossRefGoogle Scholar
  13. 13.
    Trattnig S, Burstein D, Szomolanyi P, Pinker K, Welsch GH, Mamisch TC (2009) T1(Gd) gives comparable information as Delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue. Invest Radiol 44:598–602PubMedCrossRefGoogle Scholar
  14. 14.
    Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41PubMedCrossRefGoogle Scholar
  15. 15.
    Multanen J, Rauvala E, Lammentausta E et al (2009) Reproducibility of imaging human knee cartilage by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5 Tesla. Osteoarthr Cartil 17:559–564PubMedCrossRefGoogle Scholar
  16. 16.
    Siversson C, Tiderius CJ, Neuman P, Dahlberg L, Svensson J (2010) Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging 31:1203–1209PubMedCrossRefGoogle Scholar
  17. 17.
    Felson DT, Lawrence RC, Dieppe PA et al (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133:635–646PubMedGoogle Scholar
  18. 18.
    Jensen MP, Miller L, Fisher LD (1998) Assessment of pain during medical procedures: a comparison of three scales. Clin J Pain 14:343–349PubMedCrossRefGoogle Scholar
  19. 19.
    Ferraz MB, Quaresma MR, Aquino LR, Atra E, Tugwell P, Goldsmith CH (1990) Reliability of pain scales in the assessment of literate and illiterate patients with rheumatoid arthritis. J Rheumatol 17:1022–1024PubMedGoogle Scholar
  20. 20.
    Mayerhoefer ME, Welsch GH, Mamisch TC et al (2010) The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla. Eur Radiol 20:443–449PubMedCrossRefGoogle Scholar
  21. 21.
    McKenzie CA, Williams A, Prasad PV, Burstein D (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24:928–933PubMedCrossRefGoogle Scholar
  22. 22.
    Eckstein F, Ateshian G, Burgkart R et al (2006) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthr Cartil 14:974–983PubMedCrossRefGoogle Scholar
  23. 23.
    Tiderius CJ, Tjornstrand J, Akeson P, Sodersten K, Dahlberg L, Leander P (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): intra- and interobserver variability in standardized drawing of regions of interest. Acta Radiol 45:628–634PubMedCrossRefGoogle Scholar
  24. 24.
    Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L (2001) Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose–response study in healthy volunteers. Magn Reson Med 46:1067–1071PubMedCrossRefGoogle Scholar
  25. 25.
    Miese F, Kropil P, Ostendorf B et al (2011) Motion correction improves image quality of dGEMRIC in finger joints. Eur J Radiol 80:e427–e431PubMedGoogle Scholar
  26. 26.
    Studler U, White LM, Andreisek G, Luu S, Cheng HL, Sussman MS (2010) Impact of motion on T1 mapping acquired with inversion recovery fast spin echo and rapid spoiled gradient recalled-echo pulse sequences for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in volunteers. J Magn Reson Imaging 32:394–398PubMedCrossRefGoogle Scholar
  27. 27.
    Bron EE, van Tiel J, Smit H et al (2012) Image registration improves human knee cartilage T1 mapping with delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC). Eur Radiol. doi: 10.1007/s00330-012-2590-3
  28. 28.
    Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205PubMedCrossRefGoogle Scholar
  29. 29.
    Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283PubMedCrossRefGoogle Scholar
  30. 30.
    Sijbers J, Den Dekker AJ, Raman E, Van Dyck D (1999) Parameter estimation from magnitude MR images. Int J Imag Syst Tech 10:109–114CrossRefGoogle Scholar
  31. 31.
    Rao CR (1946) Minimum variance and the estimation of several parameters. Cambridge Univ Press 43:280–283Google Scholar
  32. 32.
    Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238PubMedCrossRefGoogle Scholar
  33. 33.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRefGoogle Scholar
  34. 34.
    Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  35. 35.
    Bedi A, Feeley BT, Williams RJ 3rd (2010) Management of articular cartilage defects of the knee. J Bone Joint Surg Am 92:994–1009PubMedCrossRefGoogle Scholar
  36. 36.
    Bos PK, van Melle ML, van Osch GJ (2010) Articular cartilage repair and the evolving role of regenerative medicine. Open Access Surgery 3:109–122CrossRefGoogle Scholar
  37. 37.
    Hawezi ZK, Lammentausta E, Svensson J, Dahlberg LE, Tiderius CJ (2011) In vivo transport of Gd-DTPA(2-) in human knee cartilage assessed by depth-wise dGEMRIC analysis. J Magn Reson Imaging 34:1352–1358PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • J. van Tiel
    • 1
    • 2
    • 6
  • E. E. Bron
    • 1
    • 3
  • C. J. Tiderius
    • 4
  • P. K. Bos
    • 2
  • M. Reijman
    • 2
  • S. Klein
    • 1
    • 3
  • J. A. N. Verhaar
    • 2
  • G. P. Krestin
    • 1
  • H. Weinans
    • 2
    • 5
  • G. Kotek
    • 1
  • E. H. G. Oei
    • 1
  1. 1.Department of RadiologyErasmus Medical CenterRotterdamThe Netherlands
  2. 2.Department of Orthopedic SurgeryErasmus Medical CenterRotterdamThe Netherlands
  3. 3.Departments of Medical InformaticsErasmus Medical CenterRotterdamThe Netherlands
  4. 4.Department of Orthopedic Surgery, Skane University HospitalLund UniversityLundSweden
  5. 5.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  6. 6.Department of Radiology and Department of Orthopedic SurgeryErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations