European Radiology

, Volume 23, Issue 2, pp 513–520 | Cite as

Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status

  • Andrea RomanoEmail author
  • L. F. Calabria
  • F. Tavanti
  • G. Minniti
  • M. C. Rossi-Espagnet
  • V. Coppola
  • S. Pugliese
  • D. Guida
  • G. Francione
  • C. Colonnese
  • L. M. Fantozzi
  • A. Bozzao



To evaluate whether apparent diffusion coefficient (ADC) values can predict the status of MGMT of glioblastoma multiforme (GBM) and correlate with overall survival (OS) and progression-free survival (PFS).


This retrospective study included 47 patients with pathologically proven glioblastoma. All of them underwent MR DWI study before surgery (mean time 1 week) and the status of methylguanine-DNA-methyltransferase (MGMT) promoter methylation was searched for. Minimum apparent diffusion coefficient (ADC) values were evaluated. OS and PSF parameters were calculated, and Student’s t-test, Kaplan-Meier curves, linear and Cox regression were performed.


Twenty-five patients showed positive methylation of the MGMT promoter. Patients showing MGMT promoter methylation had higher minimum ADC values, and they survived longer than those without MGMT promoter methylation. The median ADCmin value of 0.80 represents the cutoff value able to distinguish between methylated and un-methylated patients. Patients showing minimum ADC values higher than 0.80 survived longer than patients with minimum ADC values lower than 0.80. A linear correlation between minimum ADC values vs. the OS and PFS was observed.


Minimum ADC values in glioblastoma multiforme could be used as a preoperative parameter to estimate the status of MGMT promoter methylation and the survival of patients.

Key Points

• Diffusion-weighted MR imaging (DWI) provides new insights into glioblastoma multiforme (GBM)

• DWI ADCmin values can predict the methylation status of MGMT promoter.

• The MGMT promoter methylation group survived longer than the unmethylated group.

• Patients with high ADCmin values survived longer than patients with low values.


Methylation status of MGMT promoter Apparent diffusion coefficient Overall survival Progression-free survival Glioblastoma multiforme 







Progression-free survival


Overall survival


Apparent diffusion coefficient


Diffusion-weighted images


Glioblastoma multiforme




Magnetisation-prepared rapid acquisition gradient echo


Received operating characteristic


Region of interest


Fluid attenuated inversion recovery


Polymerase chain reaction


Fractional anisotropy



Beatrice Bozzao, English editing.


  1. 1.
    Hegi E, Diserens AC, Godard S et al (2004) Clinical trial substantiates the predictive value of O-6 methylguanine—DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 6:1871–1874CrossRefGoogle Scholar
  2. 2.
    Rivera AL, Pelloski CE, Gilbert MR et al (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neurooncology 2:116–121Google Scholar
  3. 3.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 10:997–1003CrossRefGoogle Scholar
  4. 4.
    Paz MF, Yaya-Tur R, Rojas-Marcos I et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10:4933–4938PubMedCrossRefGoogle Scholar
  5. 5.
    Idbaih A, Omuro A, Ducray F, Hoang-Xuan K (2007) Molecular genetic markers as predictors of response to chemotherapy in gliomas. Curr Opin Oncol 19:606–611PubMedCrossRefGoogle Scholar
  6. 6.
    Eoli M, Menghi F, Bruzzone MG, De Simone T, Valletta L (2007) Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 9:2606–2613CrossRefGoogle Scholar
  7. 7.
    Hegi ME, Liu L, Herman JG et al (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 25:4189–4199CrossRefGoogle Scholar
  8. 8.
    Weller M, Stupp R, Reifenberger G et al (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51PubMedCrossRefGoogle Scholar
  9. 9.
    Arvinda HR, Kesavadas C, Sarma PS et al (2009) Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol 94:87–96PubMedCrossRefGoogle Scholar
  10. 10.
    Barajas RF, Hodgson G, Chang JS, Vandenberg SR, Yeh RF, Parsa AT (2010) Glioblastoma multiforme regional genetic and cellular expression patterns: Influence on anatomic and physiologic MR imaging. Radiology 2:564–576CrossRefGoogle Scholar
  11. 11.
    Oh J, Henry RG, Pirzkall P et al (2004) Survival analysis in patients with glioblastoma multiforme: predictive value of choline to N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging 19:546–554PubMedCrossRefGoogle Scholar
  12. 12.
    Higano S, Yun X, Kumabe T, Watanabe M, Mugikura S (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 3:839–846CrossRefGoogle Scholar
  13. 13.
    Moon WJ, Choi JW, Roh HG, Lim SD, Koh YC (2012) Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology 54:555–563 yPubMedCrossRefGoogle Scholar
  14. 14.
    MacDonald DR, Cascino TL, Schold SC et al (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280PubMedGoogle Scholar
  15. 15.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83PubMedCrossRefGoogle Scholar
  16. 16.
    Paz MF, Yaya-Tur R, Rojas-Marcos I et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 15:4933–4938CrossRefGoogle Scholar
  17. 17.
    Minniti G, Amelio D, Amichetti M et al (2010) Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol 3:377–381CrossRefGoogle Scholar
  18. 18.
    Rock K, McArdle O, Forde P et al (2012) A clinical review of treatment outcomes in glioblastoma multiforme. The validation in a non-trial population of the results of a randomised phase III clinical trial: has a more radical approach improved survival? Br J Radiol. doi: 10.1259/bjr/83796755
  19. 19.
    Gerson SL (2002) Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 20:2388–2399PubMedCrossRefGoogle Scholar
  20. 20.
    Silber JR, Blank A, Bobola MS et al (1999) O6-Methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: Frequency and time to tumor progression after alkylating agent-based chemotherapy. Clin Cancer Res 5:807–814PubMedGoogle Scholar
  21. 21.
    Murakami R, Sugahara T, Nakamura H, Hirai T, Kitajima M, Hayashida Y (2007) Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 2:493–499CrossRefGoogle Scholar
  22. 22.
    Bulakbasi N, Guvenc I, Onguru O et al (2004) The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 28:735–746PubMedCrossRefGoogle Scholar
  23. 23.
    Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666PubMedCrossRefGoogle Scholar
  24. 24.
    Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235:985–991PubMedCrossRefGoogle Scholar
  25. 25.
    Watanabe T, Katayama Y, Komine C et al (2005) O6-methylguanine-DNA methyltransferase methylation and TP53 mutation in malignant astrocytomas and their relationships with clinical course. Int J Cancer 113:581–587PubMedCrossRefGoogle Scholar
  26. 26.
    Brandes AA, Franceschi E, Tosoni A et al (2008) MGMTpromoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197PubMedCrossRefGoogle Scholar
  27. 27.
    Taal W, Brandsma D, de Bruin HG et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113:405–410PubMedCrossRefGoogle Scholar
  28. 28.
    Brandes AA, Tosoni A, Spagnolli F et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. J Neurooncol 10:361–367Google Scholar
  29. 29.
    Drabycz S, Roldán G, De Robles P et al (2010) An analysis of image texture, tumour location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. NeuroImage 2:1398–1405CrossRefGoogle Scholar
  30. 30.
    Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226PubMedCrossRefGoogle Scholar
  32. 32.
    Pope WB, Qiao XJ, Kim HJ et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study. J Neurooncol 108:491–498PubMedCrossRefGoogle Scholar
  33. 33.
    Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S et al (2006) Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 3:394–403CrossRefGoogle Scholar
  34. 34.
    Kono K, Inoue Y, Nakayam K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Andrea Romano
    • 1
    • 2
    • 6
    Email author
  • L. F. Calabria
    • 1
  • F. Tavanti
    • 1
  • G. Minniti
    • 3
  • M. C. Rossi-Espagnet
    • 1
  • V. Coppola
    • 1
  • S. Pugliese
    • 1
  • D. Guida
    • 1
  • G. Francione
    • 1
  • C. Colonnese
    • 4
    • 5
  • L. M. Fantozzi
    • 1
  • A. Bozzao
    • 1
  1. 1.NESMOS, Department of Neuroradiology, S. Andrea HospitalUniversity SapienzaRomeItaly
  2. 2.IRCSS San Raffaele PisanaRomeItaly
  3. 3.Department of Radiotherapy, S. Andrea HospitalUniversity SapienzaRomeItaly
  4. 4.Department of Neuroradiology, IRCSS NeuromedUniversity SapienzaPozzilliItaly
  5. 5.Department of Neuroradiology, Umberto I HospitalUniversity SapienzaRomeItaly
  6. 6.RomeItaly

Personalised recommendations