European Radiology

, Volume 23, Issue 2, pp 381–387 | Cite as

Assessment of grating-based X-ray phase-contrast CT for differentiation of invasive ductal carcinoma and ductal carcinoma in situ in an experimental ex vivo set-up

  • Anikó Sztrókay
  • Julia Herzen
  • Sigrid D. Auweter
  • Susanne Liebhardt
  • Doris Mayr
  • Marian Willner
  • Dieter Hahn
  • Irene Zanette
  • Timm Weitkamp
  • Karin Hellerhoff
  • Franz Pfeiffer
  • Maximilian F. Reiser
  • Fabian BambergEmail author



Limited contrast between healthy and tumour tissue is a limiting factor in mammography and CT of the breast. Phase-contrast computed tomography (PC-CT) provides improved soft-tissue contrast compared with absorption-based techniques. In this study, we assessed the technical feasibility of grating-based PC-CT imaging of the breast for characterisation of ductal carcinoma in situ (DCIS).


Grating-based PC-CT was performed on one breast specimen containing an invasive ductal carcinoma and DCIS using monochromatic radiation of 23 keV. Phase-contrast and absorption-based images were compared qualitatively and quantitatively with histopathology in a blinded fashion.


Grating-based PC-CT showed improved differentiation of soft-tissue components. Circular structures of high phase-shift contrast corresponding to the walls of the dilated ductuli of the DCIS were visualised with a contrast-to-noise ratio (CNR) of 9.6 using PC-CT but were not detectable on absorption-based images (CNR = 0.27). The high phase-shift structures of the dilated ductuli were identifiable in the PC-CT volume data set allowing for 3D characterisation of DCIS.


Our results indicate that unlike conventional CT, grating-based PC-CT may allow the differentiation between invasive carcinoma and intraductal carcinoma and healthy breast tissue and provide 3D visualisation of DCIS.

Key Points

Phase-contrast computed tomography (CT) yields improved soft-tissue contrast.

The method can resolve the fine structure of a breast tumour.

Invasive and intraductal carcinoma can be differentiated.

Differentiation is possible by visual inspection and quantification.

The method could improve early breast cancer diagnosis.


X-ray phase-contrast imaging Computed tomography Synchrotron radiation Ductal carcinoma in situ (DCIS) Invasive ductal carcinoma 

Abbreviations and acronyms


phase-contrast computed tomography


ductal carcinoma in situ


phase-contrast Hounsfield unit



We would like to thank Dr. Thomas Schlossbauer for help with sample acquisition. This work was supported by the Munich Centre for Advanced Photonics Cluster of Excellence (EXC158), Karlsruhe Nano Micro Facility (KNMF) – a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT) and Siemens Healthcare (Forchheim, Germany). F. Pfeiffer and J. Herzen acknowledge support through the European Research Council (FP7, starting grant #240142). T. Weitkamp is supported by RTRA DIGITEO and Triangle de la Physique (grants 2009-034 T and 2009-79D).

Supplementary material

330_2012_2592_MOESM1_ESM.doc (67 kb)
Esm 1  (DOC 67 kb) (6.9 mb)
Supplementary Movie 1 Axial phase-contrast images of the tumour-bearing sample. (MOV 7096 kb) (21.4 mb)
Supplementary Movie 2 Coronal phase-contrast images of the tumour-bearing sample. (MOV 21868 kb) (7.9 mb)
Supplementary Movie 3 Axial absorption-contrast images of the tumour-bearing sample. (MOV 8127 kb) (34.6 mb)
Supplementary Movie 4 Coronal absorption-contrast images of the tumour-bearing sample. (MOV 35458 kb) (4.9 mb)
Supplementary Movie 5 Axial phase-contrast images of the unaffected sample. (MOV 5036 kb) (5.9 mb)
Supplementary Movie 6 Coronal phase-contrast images of the unaffected sample. (MOV 6058 kb) (12.7 mb)
Supplementary Movie 7 Axial absorption-contrast images of the unaffected sample. (MOV 13004 kb) (14.8 mb)
Supplementary Movie 8 Coronal absorption-contrast images of the unaffected sample. (MOV 15118 kb)


  1. 1.
    Momose A (2005) Recent advances in X-ray phase imaging. Jpn J Appl Phys 44:6355–6367CrossRefGoogle Scholar
  2. 2.
    Pfeiffer F, Bunk O, David C et al (2007) High-resolution brain tumor visualization using three-dimensional X-ray phase contrast tomography. Phys Med Biol 52:6923–6930PubMedCrossRefGoogle Scholar
  3. 3.
    Bech M, Jensen TH, Bunk O et al (2010) Advanced contrast modalities for X-ray radiology: phase-contrast and dark-field imaging using a grating interferometer. Z Med Phys 20:7–16PubMedGoogle Scholar
  4. 4.
    Meuli R, Hwu Y, Je JH, Margaritondo G (2004) Synchrotron radiation in radiology: radiology techniques based on synchrotron sources. Eur Radiol 14:1550–1560PubMedCrossRefGoogle Scholar
  5. 5.
    Momose A (2003) Phase-sensitive imaging and phase tomography using X-ray interferometers. Opt Express 11:2303–2314PubMedCrossRefGoogle Scholar
  6. 6.
    Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261CrossRefGoogle Scholar
  7. 7.
    Pfeiffer F, Kottler C, Bunk O, David C (2007) Hard X-ray phase tomography with low-brilliance sources. Phys Rev Lett 98:108105Google Scholar
  8. 8.
    Keyrilainen J, Fernandez M, Fiedler S et al (2005) Visualisation of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology. Eur J Radiol 53:226–237PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandez M, Keyrilainen J, Serimaa R et al (2005) Human breast cancer in vitro: matching histo-pathology with small-angle X-ray scattering and diffraction enhanced X-ray imaging. Phys Med Biol 50:2991–3006PubMedCrossRefGoogle Scholar
  10. 10.
    Stampanoni M, Wang Z, Thuring T et al (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Invest Radiol 46:801–806PubMedCrossRefGoogle Scholar
  11. 11.
    Castelli E, Tonutti M, Arfelli F et al (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259:684–694PubMedCrossRefGoogle Scholar
  12. 12.
    Tanaka T, Honda C, Matsuo S et al (2005) The first trial of phase contrast imaging for digital full-field mammography using a practical molybdenum X-ray tube. Invest Radiol 40:385–396PubMedCrossRefGoogle Scholar
  13. 13.
    Takeda T, Momose A, Ueno E, Itai Y (1998) Phase-contrast X-ray CT image of breast tumor. J Synchrotron Radiat 5:1133–1135PubMedCrossRefGoogle Scholar
  14. 14.
    Bravin A, Keyrilainen J, Fernandez M et al (2007) High-resolution CT by diffraction-enhanced X-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology. Phys Med Biol 52:2197–2211PubMedCrossRefGoogle Scholar
  15. 15.
    Fiedler S, Bravin A, Keyrilainen J et al (2004) Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT, mammography and histology. Phys Med Biol 49:175–188PubMedCrossRefGoogle Scholar
  16. 16.
    Herzen J, Donath T, Pfeiffer F et al (2009) Quantitative phase-contrast tomography of a liquid phantom using a conventional X-ray tube source. Opt Express 17:10010–10018PubMedCrossRefGoogle Scholar
  17. 17.
    Qi Z, Zambelli J, Bevins N, Chen GH (2010) Quantitative imaging of electron density and effective atomic number using phase contrast CT. Phys Med Biol 55:2669–2677PubMedCrossRefGoogle Scholar
  18. 18.
    Weitkamp T, Zanette I, David C et al (2010) Recent developments in X-ray Talbot interferometry at ESRF-ID19. Proc SPIE 7804:780406CrossRefGoogle Scholar
  19. 19.
    Weitkamp T, David C, Kottler C, Bunk O, Pfeiffer F (2006) Tomography with grating interferometers at low-brilliance sources. Proc SPIE 6318:S3180Google Scholar
  20. 20.
    Sztrokay A, Diemoz PC, Schlossbauer T et al (2012) High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast. Phys Med Biol 57:2931–2942PubMedCrossRefGoogle Scholar
  21. 21.
    Autier P (2011) Breast cancer screening. Eur J Cancer 47:S133–S146PubMedCrossRefGoogle Scholar
  22. 22.
    Van Goethem M, Tjalma W, Schelfout K, Verslegers I, Biltjes I, Parizel P (2006) Magnetic resonance imaging in breast cancer. Eur J Surg Oncol 32:901–910PubMedCrossRefGoogle Scholar
  23. 23.
    Dhillon GS, Bell N, Ginat DT, Levit A, Destounis S, O’Connell A (2011) Breast MR imaging: what the radiologist needs to know. J Clin Imag Sci 1:48CrossRefGoogle Scholar
  24. 24.
    Kalender WA, Beister M, Boone JM, Kolditz D, Vollmar SV, Weigel MC (2012) High-resolution spiral CT of the breast at very low dose: concept and feasibility considerations. Eur Radiol 22:1–8PubMedCrossRefGoogle Scholar
  25. 25.
    Donath T, Pfeiffer F, Bunk O et al (2010) Toward clinical X-ray phase-contrast CT: demonstration of enhanced soft-tissue contrast in human specimen. Invest Radiol 45:445–452PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Anikó Sztrókay
    • 1
  • Julia Herzen
    • 2
  • Sigrid D. Auweter
    • 1
  • Susanne Liebhardt
    • 1
  • Doris Mayr
    • 3
  • Marian Willner
    • 2
  • Dieter Hahn
    • 2
  • Irene Zanette
    • 2
    • 4
  • Timm Weitkamp
    • 5
  • Karin Hellerhoff
    • 1
  • Franz Pfeiffer
    • 2
  • Maximilian F. Reiser
    • 1
  • Fabian Bamberg
    • 1
    • 6
    Email author
  1. 1.Department of Clinical RadiologyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Department of PhysicsTechnische Universität MünchenGarchingGermany
  3. 3.Institute of PathologyLudwig-Maximilians-Universität MünchenMunichGermany
  4. 4.European Synchrotron Radiation Facility (ESRF)GrenobleFrance
  5. 5.Synchrotron Soleil, L’Orme des MerisiersGif-sur-YvetteFrance
  6. 6.Institute of Clinical RadiologyLMU MunichMunichGermany

Personalised recommendations