European Radiology

, Volume 23, Issue 1, pp 198–204 | Cite as

Accuracy and speed of robotic assisted needle interventions using a modern cone beam computed tomography intervention suite: a phantom study

  • Boris SchulzEmail author
  • Katrin Eichler
  • Petra Siebenhandl
  • Tatjana Gruber-Rouh
  • Christoph Czerny
  • Thomas Josef Vogl
  • Stephan Zangos



To analyse the feasibility and accuracy of robotic aided interventions on a phantom when using a modern C-arm-mounted cone beam computed tomography (CBCT) device in combination with needle guidance software.


A small robotic device capable of holding and guiding needles was attached to the intervention table. After acquiring a 3D data set the access path was planned on the CBCT workstation and shown on the intervention monitor. Then the robot was aligned to the live fluorosopic image. A total of 40 punctures were randomly conducted on a phantom armed with several targets (diameter 2 mm) in single and double oblique trajectory (n = 20 each). Target distance, needle deviation and time for the procedures were analysed.


All phantom interventions (n = 40) could be performed successfully. Mean target access path within the phantom was 8.5 cm (min 4.2 cm, max 13.5 cm). Average needle tip deviation was 1.1 mm (min 0 mm, max 4.5 mm), time duration was 3:59 min (min 2:07 min, max 10:37 min).


When using the proposed robot device in a CBCT intervention suite, highly accurate needle-based interventional punctures are possible in a reasonable timely manner in single as well as in double oblique trajectories.

Key Points

Percutaneous image-guided biopsy is an important contribution of modern radiology.

A compact robotic device has been developed which may facilitate such procedures.

Accurate needle-based interventions are possible in a timely manner.

Complex trajectories and even deep access paths are possible.


Flat-panel computed tomography Interventional CT Percutaneus biopsy Robot Robotic device 


  1. 1.
    Gupta R, Cheung AC, Bartling SH et al (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–2022PubMedCrossRefGoogle Scholar
  2. 2.
    Vogl TJ, Naguib NN, Nour-Eldin NE, Lehnert T, Mbalisike E (2009) C-arm computed tomography for transarterial chemoperfusion and chemo-embolization of thoracic lesions. Radiologe 49:837–841PubMedCrossRefGoogle Scholar
  3. 3.
    Kamran M, Nagaraja S, Byrne JV (2010) C-arm flat detector computed tomography: the technique and its applications in interventional neuro-radiology. Neuroradiology 52:319–327PubMedCrossRefGoogle Scholar
  4. 4.
    Jin KN, Park CM, Goo JM et al (2010) Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems. Eur Radiol 20:2108–2115PubMedCrossRefGoogle Scholar
  5. 5.
    Zangos S, Melzer A, Eichler K et al (2011) MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology 259:903–910PubMedCrossRefGoogle Scholar
  6. 6.
    Rasmus M, Huegli RW, Bilecen D, Jacob AL (2007) Robotically assisted CT-based procedures. Minim Invasive Ther Allied Technol 16:212–216PubMedCrossRefGoogle Scholar
  7. 7.
    Onogi S, Morimoto K, Sakuma I et al (2005) Development of the needle insertion robot for percutaneous vertebroplasty. Med Image Comput Comput Assist Interv 8:105–113PubMedGoogle Scholar
  8. 8.
    Fichtinger G, Fiene JP, Kennedy CW et al (2008) Robotic assistance for ultrasound-guided prostate brachytherapy. Med Image Anal 12:535–545PubMedCrossRefGoogle Scholar
  9. 9.
    Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D (2006) Interventional robotic systems: applications and technology state-of-the-art. Minim Invasive Ther Allied Technol 15:101–113PubMedCrossRefGoogle Scholar
  10. 10.
    Penzkofer T, Isfort P, Bruners P et al (2010) Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments. Eur Radiol 20:2656–2662PubMedCrossRefGoogle Scholar
  11. 11.
    Tam AL, Mohamed A, Pfister M et al (2010) C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty. Spine 35:1095–1099PubMedGoogle Scholar
  12. 12.
    Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, Gorrostieta E, Kalender WA (2011) Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot 7:225–236PubMedCrossRefGoogle Scholar
  13. 13.
    Yanof J, Haaga J, Klahr P et al (2001) CT-integrated robot for interventional procedures: preliminary experiment and computer-human interfaces. Comput Aided Surg 6:352–359PubMedCrossRefGoogle Scholar
  14. 14.
    Schell B, Eichler K, Mack MG et al (2012) Robot-assisted biopsies in a high-field MRI system - first clinical results. Rofo 184:42–47PubMedCrossRefGoogle Scholar
  15. 15.
    Cleary K, Freedman M, Clifford M, Lindisch D, Onda S, Jiang L (2001) Image-guided robotic delivery system for precise placement of therapeutic agents. J Control Release 74:363–368PubMedCrossRefGoogle Scholar
  16. 16.
    Pfleiderer SO, Marx C, Vagner J, Franke RP, Reichenbach JR, Kaiser WA (2005) Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system: in vitro experiments and preliminary clinical experience in four patients. Invest Radiol 40:458–463PubMedCrossRefGoogle Scholar
  17. 17.
    Cadeddu JA, Bzostek A, Schreiner S et al (1997) A robotic system for percutaneous renal access. J Urol 158:1589–1593PubMedCrossRefGoogle Scholar
  18. 18.
    Ritter M, Rassweiler MC, Hacker A, Michel MS (2012) Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. doi: 10.1007/s00345-012-0847-8
  19. 19.
    Murayama Y, Irie K, Saguchi T et al (2011) Robotic digital subtraction angiography systems within the hybrid operating room. Neurosurgery 68:1427–1432PubMedGoogle Scholar
  20. 20.
    Schulz B, Heidenreich R, Heidenreich M, et al. (2012) Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications. Eur J Radiol. doi: 10.1016/j.ejrad.2012.01.010
  21. 21.
    Bai M, Liu B, Mu H, Liu X, Jiang Y (2011) The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol. doi: 10.1016/j.ejrad.2011.09.006

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Boris Schulz
    • 1
    • 3
    Email author
  • Katrin Eichler
    • 1
  • Petra Siebenhandl
    • 1
  • Tatjana Gruber-Rouh
    • 1
  • Christoph Czerny
    • 2
  • Thomas Josef Vogl
    • 1
  • Stephan Zangos
    • 1
  1. 1.Institute for Diagnostic and Interventional RadiologyGoethe University HospitalFrankfurtGermany
  2. 2.Department of Trauma SurgeryGoethe University HospitalFrankfurtGermany
  3. 3.Department of Diagnostic and Interventional RadiologyGoethe University HospitalFrankfurtGermany

Personalised recommendations