Advertisement

European Radiology

, Volume 23, Issue 1, pp 235–245 | Cite as

Augmented reality visualisation using an image overlay system for MR-guided interventions: technical performance of spine injection procedures in human cadavers at 1.5 Tesla

  • Jan Fritz
  • Paweena U-Thainual
  • Tamas Ungi
  • Aaron J. Flammang
  • Gabor Fichtinger
  • Iulian I. Iordachita
  • John A. CarrinoEmail author
Musculoskeletal

Abstract

Objectives

To prospectively assess the technical performance of an augmented reality system for MR-guided spinal injection procedures.

Methods

The augmented reality system was used with a clinical 1.5-T MRI system. A total of 187 lumbosacral spinal injection procedures (epidural injection, spinal nerve root injection, facet joint injection, medial branch block, discography) were performed in 12 human cadavers. Needle paths were planned with the Perk Station module of 3D Slicer software on high-resolution MR images. Needles were placed under augmented reality MRI navigation. MRI was used to confirm needle locations. T1-weighted fat-suppressed MRI was used to visualise the injectant. Outcome variables assessed were needle adjustment rate, inadvertent puncture of non-targeted structures, successful injection rate and procedure time.

Results

Needle access was achieved in 176/187 (94.1 %) targets, whereas 11/187 (5.9 %) were inaccessible. Six of 11 (54.5 %) L5–S1 disks were inaccessible, because of an axial obliquity of 30˚ (27˚–34˚); 5/11 (45.5 %) facet joints were inaccessible because of osteoarthritis or fusion. All accessible targets (176/187, 94.1 %) were successfully injected, requiring 47/176 (26.7 %) needle adjustments. There were no inadvertent punctures of vulnerable structures. Median procedure time was 10.2 min (5–19 min).

Conclusions

Image overlay navigated MR-guided spinal injections were technically accurate. Disks with an obliquity ≥27˚ may be inaccessible.

Key Points

Augmented reality technology facilitates MR-guided spine injections.

Patient and operator exposure to ionising radiation can be obviated.

MR imaging guidance enabled the procedure without need of a dedicated interventional MRI system.

Various MR-guided spine injection procedures using augmented reality are technically accurate.

Augmented reality has potential to simplify the workflow of MR-guided spine injections.

Keywords

Spine injection MR-guided Interventional MR imaging Augmented reality Image overlay 

Notes

Acknowledgments

Acknowledgment of grants or other assistance: National Cancer Institute, 1 R01 CA118371-01A2—Image Overlay for MRI-Guided Needle Insertions.

Supplementary material

330_2012_2569_MOESM1_ESM.avi (210 kb)
ESM 1 (AVI 209 kb)
330_2012_2569_MOESM2_ESM.avi (23.7 mb)
ESM 2 (AVI 24250 kb)

References

  1. 1.
    Fritz J, Niemeyer T, Clasen S et al (2007) Management of chronic low back pain: rationales, principles, and targets of imaging-guided spinal injections. Radiographics 27:1751–1771PubMedCrossRefGoogle Scholar
  2. 2.
    Carrino JA, Morrison WB, Parker L, Schweitzer ME, Levin DC, Sunshine JH (2002) Spinal injection procedures: volume, provider distribution, and reimbursement in the US Medicare population from 1993 to 1999. Radiology 225:723–729PubMedCrossRefGoogle Scholar
  3. 3.
    Krombach GA, Schmitz-Rode T, Wein BB et al (2000) Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note. Neuroradiology 42:838–841PubMedCrossRefGoogle Scholar
  4. 4.
    Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF (2000) Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology 216:180–184PubMedGoogle Scholar
  5. 5.
    Paulson EK, Sheafor DH, Enterline DS, McAdams HP, Yoshizumi TT (2001) CT fluoroscopy–guided interventional procedures: techniques and radiation dose to radiologists. Radiology 220:161–167PubMedGoogle Scholar
  6. 6.
    Wagner AL (2004) Selective lumbar nerve root blocks with CT fluoroscopic guidance: technique, results, procedure time, and radiation dose. AJNR Am J Neuroradiol 25:1592–1594PubMedGoogle Scholar
  7. 7.
    Wagner LK (2000) CT fluoroscopy: another advancement with additional challenges in radiation management. Radiology 216:9–10PubMedGoogle Scholar
  8. 8.
    Blanco SR, Carrino JA (2005) Musculoskeletal interventional MR imaging. Magn Reson Imaging Clin N Am 13:519–532CrossRefGoogle Scholar
  9. 9.
    Fritz J, Henes JC, Thomas C et al (2008) Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach. AJR Am J Roentgenol 191:1717–1724PubMedCrossRefGoogle Scholar
  10. 10.
    Fritz J, Clasen S, Boss A et al (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18:1513–1518PubMedCrossRefGoogle Scholar
  11. 11.
    Fritz J, Thomas C, Tzaribachev N et al (2009) MRI-guided injection procedures of the temporomandibular joints in children and adults: technique, accuracy, and safety. AJR Am J Roentgenol 193:1148–1154PubMedCrossRefGoogle Scholar
  12. 12.
    Fritz J, Thomas C, Clasen S, Claussen CD, Lewin JS, Pereira PL (2009) Freehand real-time MRI-guided lumbar spinal injection procedures at 1.5 T: feasibility, accuracy, and safety. AJR Am J Roentgenol 192:W161–W167PubMedCrossRefGoogle Scholar
  13. 13.
    Fritz J, Tzaribachev N, Thomas C et al (2010) Evaluation of MR imaging guided steroid injection of the sacroiliac joints for the treatment of children with refractory enthesitis-related arthritis. Eur Radiol 21:1050–1057PubMedCrossRefGoogle Scholar
  14. 14.
    Ojala R, Vahala E, Karppinen J et al (2000) Nerve root infiltration of the first sacral root with MRI guidance. J Magn Reson Imaging 12:556–561PubMedCrossRefGoogle Scholar
  15. 15.
    Ojala R, Klemola R, Karppinen J, Sequeiros RB, Tervonen O (2001) Sacro-iliac joint arthrography in low back pain: feasibility of MRI guidance. Eur J Radiol 40:236–239PubMedCrossRefGoogle Scholar
  16. 16.
    Smith KA, Carrino J (2008) MRI-guided interventions of the musculoskeletal system. J Magn Reson Imaging 27:339–346PubMedCrossRefGoogle Scholar
  17. 17.
    Hushek SG, Martin AJ, Steckner M, Bosak E, Debbins J, Kucharzyk W (2008) MR systems for MRI-guided interventions. J Magn Reson Imaging 27:253–266PubMedCrossRefGoogle Scholar
  18. 18.
    Lewin JS, Petersilge CA, Hatem SF et al (1998) Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 170:1593–1601PubMedGoogle Scholar
  19. 19.
    Weiss CR, Nour SG, Lewin JS (2008) MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging 27:311–325PubMedCrossRefGoogle Scholar
  20. 20.
    Weiss CR, Marker DR, Fischer GS, Fichtinger G, Machado AJ, Carrino JA (2011) Augmented reality visualization using image-overlay for MR-guided interventions: system description, feasibility, and initial evaluation in a spine phantom. AJR Am J Roentgenol 196:W305–W307PubMedCrossRefGoogle Scholar
  21. 21.
    Fischer GS, Deguet A, Schlattman D et al (2006) MRI image overlay: applications to arthrography needle insertion. Stud Health Technol Inform 119:150–155PubMedGoogle Scholar
  22. 22.
    Fichtinger G, Deguet A, Masamune K et al (2005) Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng 52:1415–1424PubMedCrossRefGoogle Scholar
  23. 23.
    Fritz J, U-Thainual P, Ungi T et al (2011) Augmented reality visualization using image-overlay for MR-guided interventions: accuracy for lumbar spinal procedures with a 1.5-Tesla MRI scanner. AJR Am J Roentgenol 198:W266–W273CrossRefGoogle Scholar
  24. 24.
    Vikal S, Thainual P, Carrino JA, Iordachita I, Fischer GS, Fichtinger G (2010) Perk Station–Percutaneous surgery training and performance measurement platform. Comput Med Imaging Graph 34:19–32PubMedCrossRefGoogle Scholar
  25. 25.
    Gering DT, Nabavi A, Kikinis R et al (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975PubMedCrossRefGoogle Scholar
  26. 26.
    Obesity: preventing and managing the global epidemic. Report of a WHO consultation (2000) World Health Organ Tech Rep Ser 894:i–253Google Scholar
  27. 27.
    Carrino JA, Lurie JD, Tosteson AN et al (2009) Lumbar spine: reliability of MR imaging findings. Radiology 250:161–170PubMedCrossRefGoogle Scholar
  28. 28.
    Streitparth F, Walter T, Wonneberger U et al (2010) Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features. Eur Radiol 20:395–403PubMedCrossRefGoogle Scholar
  29. 29.
    Sequeiros RB, Ojala RO, Klemola R, Vaara TJ, Jyrkinen L, Tervonen OA (2002) MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking. Eur Radiol 12:1331–1337PubMedCrossRefGoogle Scholar
  30. 30.
    Sequeiros RB, Klemola R, Ojala R, Jyrkinen L, Vaara T, Tervonen O (2003) Percutaneous MR-guided discography in a low-field system using optical instrument tracking: a feasibility study. J Magn Reson Imaging 17:214–219PubMedCrossRefGoogle Scholar
  31. 31.
    Streitparth F, Hartwig T, Schnackenburg B et al (2011) MR-guided discography using an open 1 Tesla MRI system. Eur Radiol 21:1043–1049PubMedCrossRefGoogle Scholar
  32. 32.
    Fritz J, Pereira PL (2007) MR-Guided pain therapy: principles and clinical applications. Rofo 179:914–924PubMedCrossRefGoogle Scholar
  33. 33.
    Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291PubMedCrossRefGoogle Scholar
  34. 34.
    Sullivan WJ, Willick SE, Chira-Adisai W et al (2000) Incidence of intravascular uptake in lumbar spinal injection procedures. Spine (Phila Pa 1976) 25:481–486CrossRefGoogle Scholar
  35. 35.
    Furman MB, O'Brien EM, Zgleszewski TM (2000) Incidence of intravascular penetration in transforaminal lumbosacral epidural steroid injections. Spine (Phila Pa 1976) 25:2628–2632CrossRefGoogle Scholar
  36. 36.
    Manchikanti L, Cash KA, Pampati V, Damron KS, McManus CD (2004) Evaluation of lumbar transforaminal epidural injections with needle placement and contrast flow patterns: a prospective, descriptive report. Pain Physician 7:217–223PubMedGoogle Scholar
  37. 37.
    Goodman BS, Lincoln CE, Deshpande KK, Poczatek RB, Lander PH, Devivo MJ (2005) Incidence of intravascular uptake during fluoroscopically guided lumbar disc injections: a prospective observational study. Pain Physician 8:263–266PubMedGoogle Scholar
  38. 38.
    Lee CJ, Kim YC, Shin JH et al (2008) Intravascular injection in lumbar medial branch block: a prospective evaluation of 1433 injections. Anesth Analg 106:1274–1278, tablePubMedCrossRefGoogle Scholar
  39. 39.
    Kennedy DJ, Dreyfuss P, Aprill CN, Bogduk N (2009) Paraplegia following image-guided transforaminal lumbar spine epidural steroid injection: two case reports. Pain Med 10:1389–1394PubMedCrossRefGoogle Scholar
  40. 40.
    Lyders EM, Morris PP (2009) A case of spinal cord infarction following lumbar transforaminal epidural steroid injection: MR imaging and angiographic findings. AJNR Am J Neuroradiol 30:1691–1693PubMedCrossRefGoogle Scholar
  41. 41.
    Glaser SE, Falco F (2005) Paraplegia following a thoracolumbar transforaminal epidural steroid injection. Pain Physician 8:309–314PubMedGoogle Scholar
  42. 42.
    Houten JK, Errico TJ (2002) Paraplegia after lumbosacral nerve root block: report of three cases. Spine J 2:70–75PubMedCrossRefGoogle Scholar
  43. 43.
    Thefenne L, Dubecq C, Zing E et al (2010) A rare case of paraplegia complicating a lumbar epidural infiltration. Ann Phys Rehabil Med 53:575–583PubMedGoogle Scholar
  44. 44.
    Lenoir T, Deloin X, Dauzac C, Rillardon L, Guigui P (2008) Paraplegia after interlaminar epidural steroid injection: a case report. Rev Chir Orthop Reparatrice Appar Mot 94:697–701PubMedCrossRefGoogle Scholar
  45. 45.
    Shetty SK, Nelson EN, Lawrimore TM, Palmer WE (2007) Use of gadolinium chelate to confirm epidural needle placement in patients with an iodinated contrast reaction. Skeletal Radiol 36:301–307PubMedCrossRefGoogle Scholar
  46. 46.
    Sharma SK, Jones JO, Zeballos PP, Irwin SA, Martin TW (2009) The prevention of discitis during discography. Spine J 9:936–943PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Jan Fritz
    • 1
  • Paweena U-Thainual
    • 2
    • 6
  • Tamas Ungi
    • 3
  • Aaron J. Flammang
    • 4
  • Gabor Fichtinger
    • 3
  • Iulian I. Iordachita
    • 2
  • John A. Carrino
    • 1
    • 5
    Email author
  1. 1.Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Mechanical Engineering and Laboratory for Computational Sensing and RoboticsJohns Hopkins University (JHU)BaltimoreUSA
  3. 3.School of ComputingQueen’s UniversityKingstonCanada
  4. 4.Siemens Corporate ResearchCenter for Applied Medical ImagingBaltimoreUSA
  5. 5.Musculoskeletal Division, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreUSA
  6. 6.Department of Mechanical & Material EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations