European Radiology

, Volume 23, Issue 1, pp 37–47

Monitoring therapeutic effects in experimental stroke by serial USPIO-enhanced MRI

  • Marilena Marinescu
  • Fabien Chauveau
  • Anne Durand
  • Adrien Riou
  • Tae-Hee Cho
  • Anne Dencausse
  • Sébastien Ballet
  • Norbert Nighoghossian
  • Yves Berthezène
  • Marlène Wiart
Magnetic Resonance



This study sought to evaluate whether the therapeutic effects of an anti-inflammatory drug such as minocycline could be monitored by serial ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced MRI in experimental stroke.


Mice received a three-dose minocycline treatment (n = 12) or vehicle (n = 12) after permanent middle cerebral artery occlusion. USPIOs were administered 5 h post-surgery. MRI was performed before, 24 h and 48 h post-USPIO administration. MRI endpoints were the extent of signal abnormalities on R2 maps (=1/T2) and quantitative R2 changes over time (∆R2). Post-mortem brains were prepared either for immunohistology (n = 16) or for iron dosage (n = 8).


As expected, treatment with minocycline significantly reduced infarct size, blood-brain barrier permeability and F4/80 immunostaining for microglia/macrophages. Areas of R2 maps > 35 ms-1 also appeared significantly decreased in minocycline-treated mice (ANOVA for repeated measures, P = 0.017). There was a fair correlation between these areas and the amount of iron in the brain (R2 = 0.69, P = 0.010), but no significant difference in ∆R2 was found between the two groups.


This study showed that the extent of signal abnormalities on R2 maps can be used as a surrogate marker to detect minocycline effects in a murine experimental model of stroke.

Key Points

Ultrasmall superparamagnetic particles of iron oxide offer new avenues for MRI research

Treatment of the inflammatory response following ischaemic stroke is currently undergoing evaluation.

Minocycline treatment significantly reduced areas of signal abnormalities on USPIO-enhanced MRI.

These areas correlated with the amount of iron in the brain.

Thus USPIO-enhanced MRI might provide a surrogate marker to monitor treatment


MRI USPIO Inflammation Cerebral ischaemia Treatment monitoring 


  1. 1.
    Adams HP Jr, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711PubMedCrossRefGoogle Scholar
  2. 2.
    Hacke W, Kaste M, Bluhmki E et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329PubMedCrossRefGoogle Scholar
  3. 3.
    Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62:127–136PubMedGoogle Scholar
  4. 4.
    Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197PubMedCrossRefGoogle Scholar
  5. 5.
    Corot C, Petry KG, Trivedi R et al (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625PubMedCrossRefGoogle Scholar
  6. 6.
    Chauveau F, Cho TH, Berthezene Y, Nighoghossian N, Wiart M (2011) Imaging inflammation in stroke using magnetic resonance imaging. Int J Clin Pharmacol Ther 48:718–728Google Scholar
  7. 7.
    Nighoghossian N, Wiart M, Cakmak S et al (2007) Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 38:303–307PubMedCrossRefGoogle Scholar
  8. 8.
    Bernd H, De Kerviler E, Gaillard S, Bonnemain B (2009) Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest Radiol 44:336–342PubMedCrossRefGoogle Scholar
  9. 9.
    Emsley HC, Tyrrell PJ (2002) Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22(12):1399–1419PubMedCrossRefGoogle Scholar
  10. 10.
    Planas AM, Traystman RJ (2010) Advances in translational medicine. Stroke 42:283–284CrossRefGoogle Scholar
  11. 11.
    Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96:13496–13500PubMedCrossRefGoogle Scholar
  12. 12.
    Morimoto N, Shimazawa M, Yamashima T, Nagai H, Hara H (2005) Minocycline inhibits oxidative stress and decreases in vitro and in vivo ischemic neuronal damage. Brain Res 1044:8–15PubMedCrossRefGoogle Scholar
  13. 13.
    Machado LS, Sazonova IY, Kozak A et al (2009) Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke 40:3028–3033PubMedCrossRefGoogle Scholar
  14. 14.
    Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 39:3372–3377PubMedCrossRefGoogle Scholar
  15. 15.
    Chauveau F, Moucharrafie S, Wiart M et al (2011) In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure. Exp Transl Stroke Med 2:4CrossRefGoogle Scholar
  16. 16.
    Pialat JB, Cho TH, Beuf O et al (2007) MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed 20:335–342PubMedCrossRefGoogle Scholar
  17. 17.
    Andes D, Craig WA (2002) Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents 19:261–268PubMedCrossRefGoogle Scholar
  18. 18.
    Homsi S, Federico F, Croci N et al (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291:122–132PubMedCrossRefGoogle Scholar
  19. 19.
    Desestret V, Brisset JC, Moucharrafie S et al (2009) Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke 40:1834–1841PubMedCrossRefGoogle Scholar
  20. 20.
    Rausch M, Sauter A, Frohlich J, Neubacher U, Radu EW, Rudin M (2001) Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 46:1018–1022PubMedCrossRefGoogle Scholar
  21. 21.
    Wiart M, Davoust N, Pialat JB et al (2007) MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 38:131–137PubMedCrossRefGoogle Scholar
  22. 22.
    Franklin (1997) The Mouse Brain In Stereotaxic Coordinates(ed)^(eds) San Diego, Calif:Academic PressGoogle Scholar
  23. 23.
    Brisset JC, Sigovan M, Chauveau F et al (2011) Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol 13:672–678PubMedCrossRefGoogle Scholar
  24. 24.
    Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093PubMedCrossRefGoogle Scholar
  25. 25.
    Martin A, Boisgard R, Kassiou M, Dolle F, Tavitian B (2010) Reduced PBR/TSPO expression after minocycline treatment in a rat model of focal cerebral ischemia: a PET study using [(18)F]DPA-714. Mol Imaging BiolGoogle Scholar
  26. 26.
    Fisher M, Feuerstein G, Howells DW et al (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250PubMedCrossRefGoogle Scholar
  27. 27.
    Fagan SC, Waller JL, Nichols FT et al (2010) Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41:2283–2287PubMedCrossRefGoogle Scholar
  28. 28.
    Rausch M, Baumann D, Neubacher U, Rudin M (2002) In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed 15:278–283PubMedCrossRefGoogle Scholar
  29. 29.
    Stroh A, Zimmer C, Werner N et al (2006) Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging. NeuroImage 33:886–897PubMedCrossRefGoogle Scholar
  30. 30.
    Brisset JC, Desestret V, Marcellino S et al (2009) Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol 20:275–285PubMedCrossRefGoogle Scholar
  31. 31.
    Sigovan M, Boussel L, Sulaiman A, et al. (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401-409Google Scholar
  32. 32.
    Fisher M, Davalos A, Rogalewski A, Schneider A, Ringelstein EB, Schabitz WR (2006) Toward a multimodal neuroprotective treatment of stroke. Stroke 37:1129–1136CrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Marilena Marinescu
    • 1
  • Fabien Chauveau
    • 1
    • 2
  • Anne Durand
    • 1
    • 2
  • Adrien Riou
    • 1
    • 2
  • Tae-Hee Cho
    • 1
    • 2
  • Anne Dencausse
    • 3
  • Sébastien Ballet
    • 3
  • Norbert Nighoghossian
    • 1
    • 2
  • Yves Berthezène
    • 1
    • 2
  • Marlène Wiart
    • 1
  1. 1.UMR CNRS 5520 CREATIS, Hopital Louis PradelUniversité de Lyon, Lyon 1BronFrance
  2. 2.CNRS, UMR 5220; INSERM, U1044; INSA de Lyon; Hospices Civils de Lyon; CREATIS; LyonAulnay-sous-BoisFrance
  3. 3.Guerbet Research GroupAulnay-sous-BoisFrance

Personalised recommendations