European Radiology

, Volume 23, Issue 1, pp 3–11

Anterior temporal lobe white matter abnormal signal (ATLAS) as an indicator of seizure focus laterality in temporal lobe epilepsy: comparison of double inversion recovery, FLAIR and T2W MR imaging

  • Emiko Morimoto
  • Mitsunori Kanagaki
  • Tomohisa Okada
  • Akira Yamamoto
  • Nobuyuki Mori
  • Riki Matsumoto
  • Akio Ikeda
  • Nobuhiro Mikuni
  • Takeharu Kunieda
  • Dominik Paul
  • Susumu Miyamoto
  • Ryosuke Takahashi
  • Kaori Togashi



To investigate the diagnostic capability of anterior temporal lobe white matter abnormal signal (ATLAS) for determining seizure focus laterality in temporal lobe epilepsy (TLE) by comparing different MR sequences.


This prospective study was approved by the institutional review board and written informed consent was obtained. Three 3D sequences (double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging (T2WI)) and two 2D sequences (FLAIR and T2WI) were acquired at 3 T. Signal changes in the anterior temporal white matter of 21 normal volunteers were evaluated. ATLAS laterality was evaluated in 21 TLE patients. Agreement of independent evaluations by two neuroradiologists was assessed using κ statistics. Differences in concordance between ATLAS laterality and clinically defined seizure focus laterality were analysed using McNemar’s test with multiple comparisons.


Pre-amygdala high signals (PAHS) were detected in all volunteers only on 3D-DIR. Inter-evaluator agreement was moderate to almost perfect for each sequence. Correct diagnosis of seizure laterality was significantly more frequent on 3D-DIR than on any other sequences (P ≤ 0.031 for each evaluator).


The most sensitive sequence for detecting ATLAS laterality was 3D-DIR. ATLAS laterality on 3D-DIR can be a good indicator for determining seizure focus localization in TLE.

Key Points

Magnetic resonance imaging is widely used to investigate temporal lobe epilepsy.

Numerous MR sequences can show anterior temporal lobe white matter abnormal signal.

ATLAS on 3D-DIR can frequently indicate seizure focus laterality in TLE.

3D-DIR is more sensitive about ATLAS laterality than T2WI or FLAIR.


Epilepsy Magnetic resonance imaging Brain Temporal lobe Sequence inversion 

Abbreviations and acronyms


anterior temporal lobe white matter abnormal signal


cerebrospinal fluid


double inversion recovery




fluid-attenuated inversion recovery


magnetic resonance


pre-amygdala high signals


temporal lobe epilepsy


T2-weighted imaging






  1. 1.
    Semah F, Picot MC, Adam C et al (1998) Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology 51:1256–1262PubMedCrossRefGoogle Scholar
  2. 2.
    Wiebe S, Blume WT, Girvin JP, Eliasziw M (2001) A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 345:311–318PubMedCrossRefGoogle Scholar
  3. 3.
    Choi H, Sell RL, Lenert L et al (2008) Epilepsy surgery for pharmacoresistant temporal lobe epilepsy: a decision analysis. JAMA 300:2497–2505PubMedCrossRefGoogle Scholar
  4. 4.
    Schorner W, Meencke HJ, Felix R (1987) Temporal-lobe epilepsy: comparison of CT and MR imaging. AJR Am J Roentgenol 149:1231–1239PubMedGoogle Scholar
  5. 5.
    Wetjen NM, Marsh WR, Meyer FB et al (2009) Intracranial electroencephalography seizure onset patterns and surgical outcomes in nonlesional extratemporal epilepsy. J Neurosurg 110:1147–1152PubMedCrossRefGoogle Scholar
  6. 6.
    Hamer HM, Morris HH, Mascha EJ et al (2002) Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology 58:97–103PubMedCrossRefGoogle Scholar
  7. 7.
    Engel J, Cascino GD, Shieleds WD (2008) Surgically remediable syndromes. In: Engel J, Pedley TA, Aicardi J (eds) Epilepsy: a comprehensive textbook, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 1761–1769Google Scholar
  8. 8.
    King MA, Newton MR, Jackson GD et al (1998) Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 352:1007–1011PubMedCrossRefGoogle Scholar
  9. 9.
    Coste S, Ryvlin P, Hermier M et al (2002) Temporopolar changes in temporal lobe epilepsy: a quantitative MRI-based study. Neurology 59:855–861PubMedCrossRefGoogle Scholar
  10. 10.
    Kuzniecky R, de la Sayette V, Ethier R et al (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22:341–347PubMedCrossRefGoogle Scholar
  11. 11.
    Adachi Y, Yagishita A, Arai N (2006) White matter abnormalities in the anterior temporal lobe suggest the side of the seizure foci in temporal lobe epilepsy. Neuroradiology 48:460–464PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell LA, Jackson GD, Kalnins RM et al (1999) Anterior temporal abnormality in temporal lobe epilepsy: a quantitative MRI and histopathologic study. Neurology 52:327–336PubMedCrossRefGoogle Scholar
  13. 13.
    Choi D, Na DG, Byun HS et al (1999) White-matter change in mesial temporal sclerosis: correlation of MRI with PET, pathology, and clinical features. Epilepsia 40:1634–1641PubMedCrossRefGoogle Scholar
  14. 14.
    Schijns OE, Bien CG, Majores M et al (2011) Presence of temporal gray-white matter abnormalities does not influence epilepsy surgery outcome in temporal lobe epilepsy with hippocampal sclerosis. Neurosurgery 68:98–106, discussion 107PubMedCrossRefGoogle Scholar
  15. 15.
    Meiners LC, Witkamp TD, de Kort GA et al (1999) Relevance of temporal lobe white matter changes in hippocampal sclerosis. Magnetic resonance imaging and histology. Invest Radiol 34:38–45PubMedCrossRefGoogle Scholar
  16. 16.
    Briellmann RS, Jackson GD, Pell GS, Mitchell LA, Abbott DF (2004) Structural abnormalities remote from the seizure focus: a study using T2 relaxometry at 3 T. Neurology 63:2303–2308PubMedCrossRefGoogle Scholar
  17. 17.
    Townsend TN, Bernasconi N, Pike GB, Bernasconi A (2004) Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy. NeuroImage 23:318–324PubMedCrossRefGoogle Scholar
  18. 18.
    Turetschek K, Wunderbaldinger P, Bankier AA et al (1998) Double inversion recovery imaging of the brain: initial experience and comparison with fluid attenuated inversion recovery imaging. Magn Reson Imaging 16:127–135PubMedCrossRefGoogle Scholar
  19. 19.
    Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Q, Li Q, Zhang J, Zhang Y (2011) Double inversion recovery magnetic resonance imaging (MRI) in the preoperative evaluation of hippocampal sclerosis: correlation with volumetric measurement and proton magnetic resonance spectroscopy ((1)H MRS). J Comput Assist Tomogr 35:406–410PubMedCrossRefGoogle Scholar
  21. 21.
    Rugg-Gunn FJ, Boulby PA, Symms MR, Barker GJ, Duncan JS (2006) Imaging the neocortex in epilepsy with double inversion recovery imaging. NeuroImage 31:39–50PubMedCrossRefGoogle Scholar
  22. 22.
    Salmenpera TM, Symms MR, Rugg-Gunn FJ et al (2007) Evaluation of quantitative magnetic resonance imaging contrasts in MRI-negative refractory focal epilepsy. Epilepsia 48:229–237PubMedCrossRefGoogle Scholar
  23. 23.
    Mugler JP 3rd, Bao S, Mulkern RV et al (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899PubMedGoogle Scholar
  24. 24.
    Langlotz CP (2003) Fundamental measures of diagnostic examination performance: usefulness for clinical decision making and research. Radiology 228:3–9PubMedCrossRefGoogle Scholar
  25. 25.
    Cotton F, Rambaud L, Hermier M (2006) Dual inversion recovery MRI helps identifying cortical tubers in tuberous sclerosis. Epilepsia 47:1072–1073PubMedCrossRefGoogle Scholar
  26. 26.
    Wattjes MP, Lutterbey GG, Gieseke J et al (2007) Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 28:54–59PubMedCrossRefGoogle Scholar
  27. 27.
    Carrete H Jr, Abdala N, Lin K et al (2007) Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study. Arq Neuropsiquiatr 65:553–560PubMedCrossRefGoogle Scholar
  28. 28.
    Cavazos JE, Sutula TP (1990) Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527:1–6PubMedCrossRefGoogle Scholar
  29. 29.
    Powell TP, Cowan WM, Raisman G (1965) The central olfactory connexions. J Anat 99:791–813PubMedGoogle Scholar
  30. 30.
    Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115:57–69PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Z, Yip CY, Grissom W, Noll DC, Boada FE, Stenger VA (2007) Reduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulses. Magn Reson Med 57:842–847PubMedCrossRefGoogle Scholar
  32. 32.
    Bock JC, Neumann K, Sander B, Schmidt D, Schorner W (1991) [Prepontine artifacts due to cerebrospinal fluid pulsation in the T-2 weighted coronal MRT picture. Clinical significance, frequency, technique for artifact suppression]. Rofo 154:202–205PubMedCrossRefGoogle Scholar
  33. 33.
    Naganawa S, Koshikawa T, Nakamura T et al (2004) Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 14:1901–1908PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Emiko Morimoto
    • 1
  • Mitsunori Kanagaki
    • 1
  • Tomohisa Okada
    • 1
  • Akira Yamamoto
    • 1
  • Nobuyuki Mori
    • 4
  • Riki Matsumoto
    • 2
  • Akio Ikeda
    • 2
  • Nobuhiro Mikuni
    • 5
  • Takeharu Kunieda
    • 3
  • Dominik Paul
    • 6
  • Susumu Miyamoto
    • 3
  • Ryosuke Takahashi
    • 2
  • Kaori Togashi
    • 1
  1. 1.Department of Diagnostic Imaging and Nuclear MedicineKyoto University Graduate School of MedicineKyotoJapan
  2. 2.Department of NeurologyKyoto University Graduate School of MedicineKyotoJapan
  3. 3.Department of NeurosurgeryKyoto University Graduate School of MedicineKyotoJapan
  4. 4.Department of RadiologyTenri HospitalTenriJapan
  5. 5.Department of NeurosurgerySapporo Medical UniversitySapporoJapan
  6. 6.Siemens AG Healthcare SectorErlangenGermany

Personalised recommendations