European Radiology

, Volume 22, Issue 12, pp 2688–2698 | Cite as

Diagnostic performance of coronary CT angiography for stenosis detection according to calcium score: systematic review and meta-analysis

  • Martijn A. M. den Dekker
  • Kristof de Smet
  • Geertruida H. de Bock
  • Rene A. Tio
  • Matthijs Oudkerk
  • Rozemarijn Vliegenthart
Cardiac

Abstract

Objectives

A systematic review and meta-analysis to assess sensitivity and specificity of coronary CT angiography (CCTA) for significant stenosis at different degrees of coronary calcification.

Methods

A literature search was performed including studies describing test characteristics of CCTA for significant stenosis, performed with at least 16-MDCT and according to calcium score (CS). Invasive coronary angiography was the reference standard. Pooled sensitivity and specificity of CCTA by CS categories and CT equipment were calculated.

Results

Of 14,121 articles, 51 studies reported on the impact of calcium scoring on diagnostic performance of CCTA and could be included in the systematic review. Twenty-seven of these studies (5,203 participants) were suitable for meta-analysis. On a patient-basis, sensitivity of CCTA for significant stenosis was 95.8, 95.6, 97.6 and 99.0% for CS 0–100, 101–400, 401–1,000 and >1,000 respectively. Specificity was 91.2, 88.2, 50.6 and 84.0% respectively. Specificity of CCTA was significantly lower for CS 401–1,000 due to lack of patients without significant stenosis. Sensitivity and specificity of 16-MDCT were significantly lower compared to more modern CT systems.

Conclusions

Even in cases of severe coronary calcification, sensitivity and specificity of CCTA for significant stenosis are high. With 64-MDCT and newer CT systems, a CS cut-off for performing CCTA no longer seems indicated.

Key Points

Decisions about performing coronary CT angiography (CCTA) sometimes depend on calcium scoring.

CCTA is highly sensitive for coronary stenosis.

With 16-MDCT, however, heavy calcification reduces specificity for significant stenosis.

For 64-MDCT (and above), CCTA has high specificity, even with severe coronary calcification.

Keywords

Computed tomography angiography Calcium score Coronary artery disease Meta-analysis Systematic review 

Abbreviations

CAD

Coronary artery disease

CCTA

Coronary CT angiography

CS

Calcium score

DSCT

Dual-source CT

MDCT

Multidetector CT

QUADAS

Quality assessment of diagnostic accuracy studies

Supplementary material

330_2012_2551_MOESM1_ESM.doc (352 kb)
Supplementary Material(DOC 351 kb)

References

  1. 1.
    Donnino R, Jacobs JE, Doshi JV et al (2009) Dual-source versus single-source cardiac CT angiography: comparison of diagnostic image quality. AJR Am J Roentgenol 192:1051–1056PubMedCrossRefGoogle Scholar
  2. 2.
    Hausleiter J, Meyer T, Hadamitzky M et al (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the coronary angiography by computed tomography with the use of a submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041PubMedCrossRefGoogle Scholar
  3. 3.
    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359:2324–2336PubMedCrossRefGoogle Scholar
  4. 4.
    Manghat NE, Morgan-Hughes GJ, Broadley AJ et al (2006) 16-detector row computed tomographic coronary angiography in patients undergoing evaluation for aortic valve replacement: comparison with catheter angiography. Clin Radiol 61:749–757PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang LJ, Wu SY, Wang J et al (2010) Diagnostic accuracy of dual-source CT coronary angiography: the effect of average heart rate, heart rate variability, and calcium score in a clinical perspective. Acta Radiol 51:727–740PubMedCrossRefGoogle Scholar
  6. 6.
    Gang S, Min L, Li L et al (2011) Evaluation of CT coronary artery angiography with 320-row detector CT in a high-risk population. Br J Radiol. doi:10.1259/bjr/90347290
  7. 7.
    Dey D, Lee CJ, Ohba M et al (2008) Image quality and artifacts in coronary CT angiography with dual-source CT: initial clinical experience. J Cardiovasc Comput Tomogr 2:105–114PubMedCrossRefGoogle Scholar
  8. 8.
    Heuschmid M, Kuettner A, Schroeder S et al (2005) ECG-gated 16-MDCT of the coronary arteries: assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol 184:1413–1419PubMedGoogle Scholar
  9. 9.
    Taylor AJ, Cerqueira M, Hodgson JM et al (2010) ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 56:1864–1894PubMedCrossRefGoogle Scholar
  10. 10.
    Russo V, Gostoli V, Lovato L et al (2007) Clinical value of multidetector CT coronary angiography as a preoperative screening test before non-coronary cardiac surgery. Heart 93:1591–1598PubMedCrossRefGoogle Scholar
  11. 11.
    Panmethis M, Wangsuphachart S, Rerkpattanapipat P, Srimahachota S, Buddhari W, Kitsukjit W (2007) Detection of coronary stenoses in chronic stable angina by multi-detector CT coronary angiography. J Med Assoc Thai 90:1573–1580PubMedGoogle Scholar
  12. 12.
    Korosoglou G, Mueller D, Lehrke S et al (2010) Quantitative assessment of stenosis severity and atherosclerotic plaque composition using 256-slice computed tomography. Eur Radiol 20:1841–1850PubMedCrossRefGoogle Scholar
  13. 13.
    Morgan-Hughes GJ, Roobottom CA, Owens PE, Marshall AJ (2005) Highly accurate coronary angiography with submillimetre, 16 slice computed tomography. Heart 91:308–313PubMedCrossRefGoogle Scholar
  14. 14.
    Maffei E, Martini C, Tedeschi C et al (2011) Diagnostic accuracy of 64-slice computed tomography coronary angiography in a large population of patients without revascularisation: registry data on the impact of calcium score. Radiol Med 116:1000–1013PubMedCrossRefGoogle Scholar
  15. 15.
    Burgstahler C, Reimann A, Drosch T et al (2007) Cardiac dual-source computed tomography in patients with severe coronary calcifications and a high prevalence of coronary artery disease. J Cardiovasc Comput Tomogr 1:143–151PubMedCrossRefGoogle Scholar
  16. 16.
    Cordeiro MA, Lardo AC, Brito MS et al (2006) CT angiography in highly calcified arteries: 2D manual vs. modified automated 3D approach to identify coronary stenoses. Int J Cardiovasc Imaging 22:507–516PubMedCrossRefGoogle Scholar
  17. 17.
    Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am J Roentgenol 186:177–184PubMedCrossRefGoogle Scholar
  18. 18.
    Cademartiri F, Mollet NR, Lemos PA et al (2005) Impact of coronary calcium score on diagnostic accuracy for the detection of significant coronary stenosis with multislice computed tomography angiography. Am J Cardiol 95:1225–1227PubMedCrossRefGoogle Scholar
  19. 19.
    Cademartiri F, Maffei E, Palumbo A et al (2010) Coronary calcium score and computed tomography coronary angiography in high-risk asymptomatic subjects: assessment of diagnostic accuracy and prevalence of non-obstructive coronary artery disease. Eur Radiol 20:846–854PubMedCrossRefGoogle Scholar
  20. 20.
    Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323PubMedCrossRefGoogle Scholar
  21. 21.
    Sa MI, Nicol ED, Stirrup J et al (2011) Implications for single phase prospective CT coronary angiography for the diagnosis of significant coronary stenoses in clinical practice. Int J Cardiol 147:393–397PubMedCrossRefGoogle Scholar
  22. 22.
    Stolzmann P, Scheffel H, Leschka S et al (2008) Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 191:1684–1689PubMedCrossRefGoogle Scholar
  23. 23.
    Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  24. 24.
    Meijs MF, Meijboom WB, Prokop M et al (2009) Is there a role for CT coronary angiography in patients with symptomatic angina? Effect of coronary calcium score on identification of stenosis. Int J Cardiovasc Imaging 25:847–854PubMedCrossRefGoogle Scholar
  25. 25.
    Diederichsen ACP, Petersen H, Jensen LO et al (2009) Diagnostic value of cardiac 64-slice computed tomography: importance of coronary calcium. Scand Cardiovasc J 43:337–344PubMedCrossRefGoogle Scholar
  26. 26.
    Ulimoen GR, Gjonnaess E, Atar D, Dahl T, Stranden E, Sandbaek G (2008) Noninvasive coronary angiography with 64-channel multidetector computed tomography in patients with acute coronary syndrome. Acta Radiol 49:1140–1144PubMedCrossRefGoogle Scholar
  27. 27.
    Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776PubMedCrossRefGoogle Scholar
  28. 28.
    Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614PubMedCrossRefGoogle Scholar
  29. 29.
    Ong TK, Chin SP, Liew CK et al (2006) Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am Heart J 151:1323.e1–1323.e6CrossRefGoogle Scholar
  30. 30.
    Buffa V, De Cecco CN, Cossu L et al (2010) Preoperative coronary risk assessment with dual-source CT in patients undergoing noncoronary cardiac surgery. Radiol Med 115:1028–1037PubMedCrossRefGoogle Scholar
  31. 31.
    Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A (2010) Impact of calcification on diagnostic accuracy of 64-slice spiral computed tomography for detecting coronary artery disease: a single center experience. Arch Iran Med 13:373–383PubMedGoogle Scholar
  32. 32.
    Bettencourt N, Rocha J, Carvalho M et al (2009) Multislice computed tomography in the exclusion of coronary artery disease in patients with presurgical valve disease. Circ Cardiovasc Imaging 2:306–313PubMedCrossRefGoogle Scholar
  33. 33.
    Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52:1724–1732PubMedCrossRefGoogle Scholar
  34. 34.
    Brodoefel H, Burgstahler C, Tsiflikas I et al (2008) Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 247:346–355PubMedCrossRefGoogle Scholar
  35. 35.
    Brodoefel H, Reimann A, Burgstahler C et al (2008) Noninvasive coronary angiography using 64-slice spiral computed tomography in an unselected patient collective: effect of heart rate, heart rate variability and coronary calcifications on image quality and diagnostic accuracy. Eur J Radiol 66:134–141PubMedCrossRefGoogle Scholar
  36. 36.
    Kuettner A, Trabold T, Schroeder S et al (2004) Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 44:1230–1237PubMedGoogle Scholar
  37. 37.
    Meng L, Cui L, Cheng Y et al (2009) Effect of heart rate and coronary calcification on the diagnostic accuracy of the dual-source CT coronary angiography in patients with suspected coronary artery disease. Korean J Radiol 10:347–354PubMedCrossRefGoogle Scholar
  38. 38.
    Gutstein A, Wolak A, Lee C et al (2008) Predicting success of prospective and retrospective gating with dual-source coronary computed tomography angiography: development of selection criteria and initial experience. J Cardiovasc Comput Tomogr 2:81–90PubMedCrossRefGoogle Scholar
  39. 39.
    Palumbo AA, Maffei E, Martini C et al (2009) Coronary calcium score as gatekeeper for 64-slice computed tomography coronary angiography in patients with chest pain: per-segment and per-patient analysis. Eur Radiol 19:2127–2135PubMedCrossRefGoogle Scholar
  40. 40.
    Mitsutake R, Niimura H, Miura S et al (2006) Clinical significance of the coronary calcification score by multidetector row computed tomography for the evaluation of coronary stenosis in Japanese patients. Circ J 70:1122–1127PubMedCrossRefGoogle Scholar
  41. 41.
    Goldstein JA, Gallagher MJ, O'Neill WW, Ross MA, O'Neil BJ, Raff GL (2007) A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol 49:863–871PubMedCrossRefGoogle Scholar
  42. 42.
    van Werkhoven JM, de Boer SM, Schuijf JD et al (2010) Impact of clinical presentation and pretest likelihood on the relation between calcium score and computed tomographic coronary angiography. Am J Cardiol 106:1675–1679PubMedCrossRefGoogle Scholar
  43. 43.
    Nieman K, Galema TW, Neefjes LA et al (2009) Comparison of the value of coronary calcium detection to computed tomographic angiography and exercise testing in patients with chest pain. Am J Cardiol 104:1499–1504PubMedCrossRefGoogle Scholar
  44. 44.
    Jin GY, Jeong SK, Lee SR, Kwon KS, Han YM, Cho YI (2009) Screening strategies for the diagnosis of coronary artery stenosis in patients with cerebral infarction using dual-source spiral CT. J Neurol Sci 284:129–134PubMedCrossRefGoogle Scholar
  45. 45.
    Husmann L, Herzog BA, Burger IA et al (2010) Usefulness of additional coronary calcium scoring in low-dose CT coronary angiography with prospective ECG-triggering impact on total effective radiation dose and diagnostic accuracy. Acad Radiol 17:201–206PubMedCrossRefGoogle Scholar
  46. 46.
    Leschka S, Scheffel H, Desbiolles L et al (2008) Combining dual-source computed tomography coronary angiography and calcium scoring: added value for the assessment of coronary artery disease. Heart 94:1154–1161PubMedCrossRefGoogle Scholar
  47. 47.
    Sousa PJ, Goncalves PA, Marques H et al (2010) Best calcium score cut-off to predict obstructive coronary artery disease in cardiac computed tomography. Eur Heart J 31:133–134Google Scholar
  48. 48.
    Marano R, De Cobelli F, Floriani I et al (2009) Italian multicenter, prospective study to evaluate the negative predictive value of 16- and 64-slice MDCT imaging in patients scheduled for coronary angiography (NIMISCAD-non invasive multicenter Italian study for coronary artery disease). Eur Radiol 19:1114–1123PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao Y, Wei J, Hua Q, Wang J, He J, Li J (2008) Comparison of multi-slice CT coronary artery imaging with coronary angiography. J Clin Rehab Tissue Eng Res 12:8792–8796Google Scholar
  50. 50.
    Meijboom WB, Mollet NR, Van Mieghem CA et al (2007) 64-slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart 93:1386–1392PubMedCrossRefGoogle Scholar
  51. 51.
    Dewey M, Vavere AL, Arbab-Zadeh A et al (2010) Patient characteristics as predictors of image quality and diagnostic accuracy of MDCT compared with conventional coronary angiography for detecting coronary artery stenoses: CORE-64 multicenter international trial. Am J Roentgenol 194:93–102CrossRefGoogle Scholar
  52. 52.
    Oudkerk M, Stillman AE, Halliburton SS et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int J Cardiovasc Imaging 24:645–671PubMedCrossRefGoogle Scholar
  53. 53.
    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012PubMedCrossRefGoogle Scholar
  54. 54.
    Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012PubMedCrossRefGoogle Scholar
  55. 55.
    Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25PubMedCrossRefGoogle Scholar
  56. 56.
    Menke J, Larsen J (2010) Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med 153:325–334PubMedGoogle Scholar
  57. 57.
    Schwartz A (2007) Diagnostic test calculator. http://araw.mede.uic.edu/cgi-ebm/testcalc.pl
  58. 58.
    Littenberg B, Moses LE (1993) Estimating diagnostic accuracy from multiple conflicting reports: a new meta-analytic method. Med Decis Making 13:313–321PubMedCrossRefGoogle Scholar
  59. 59.
    Thompson SG (1994) Why sources of heterogeneity in meta-analysis should be investigated. BMJ 309:1351–1355PubMedCrossRefGoogle Scholar
  60. 60.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560PubMedCrossRefGoogle Scholar
  61. 61.
    Lijmer JG, Bossuyt PM, Heisterkamp SH (2002) Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med 21:1525–1537PubMedCrossRefGoogle Scholar
  62. 62.
    Thompson SG, Higgins JP (2002) How should meta-regression analyses be undertaken and interpreted? Stat Med 21:1559–1573PubMedCrossRefGoogle Scholar
  63. 63.
    Harbord RM, Whiting P (2009) Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. Stata J 9:211–229Google Scholar
  64. 64.
    Otton J, Sammel N, Sesel K et al (2010) A high coronary calcium score does not preclude coronary evaluation by 320 detector-row cardiac CT. Heart Lung Circul 19:S160–S161CrossRefGoogle Scholar
  65. 65.
    Abdulla J, Pedersen KS, Budoff M, Kofoed KF (2011) Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis. Int J Cardiovasc Imaging. doi:10.1007/s10554-011-9902-6
  66. 66.
    Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Martijn A. M. den Dekker
    • 1
  • Kristof de Smet
    • 4
  • Geertruida H. de Bock
    • 2
  • Rene A. Tio
    • 3
  • Matthijs Oudkerk
    • 1
  • Rozemarijn Vliegenthart
    • 1
  1. 1.Center for Medical Imaging – North East Netherlands, Department of RadiologyUniversity of Groningen / University Medical Center GroningenGroningenThe Netherlands
  2. 2.Center for Medical Imaging – North East Netherlands, Department of EpidemiologyUniversity of Groningen / University Medical Center GroningenGroningenThe Netherlands
  3. 3.Department of CardiologyUniversity of Groningen / University Medical Center GroningenGroningenThe Netherlands
  4. 4.Department of RadiologyUniversity of BrusselsBrusselsBelgium

Personalised recommendations