European Radiology

, Volume 22, Issue 12, pp 2581–2588 | Cite as

Spectral CT of carotid atherosclerotic plaque: comparison with histology

  • R. Zainon
  • J. P. Ronaldson
  • T. Janmale
  • N. J. Scott
  • T. M. Buckenham
  • A. P. H. Butler
  • P. H. Butler
  • R. M. Doesburg
  • S. P. Gieseg
  • J. A. Roake
  • N. G. AndersonEmail author
Molecular Imaging



To distinguish components of vulnerable atherosclerotic plaque by imaging their energy response using spectral CT and comparing images with histology.


After spectroscopic calibration using phantoms of plaque surrogates, excised human carotid atherosclerotic plaques were imaged using MARS CT using a photon-processing detector with a silicon sensor layer and microfocus X-ray tube (50 kVp, 0.5 mA) at 38-μm voxel size. The plaques were imaged, sectioned and re-imaged using four threshold energies: 10, 16, 22 and 28 keV; then sequentially stained with modified Von Kossa, Perl’s Prussian blue and Oil-Red O, and photographed. Relative Hounsfield units across the energies were entered into a linear algebraic material decomposition model to identify the unknown plaque components.


Lipid, calcium, iron and water-like components of plaque have distinguishable energy responses to X-ray, visible on spectral CT images. CT images of the plaque surface correlated very well with histological photographs. Calcium deposits (>1,000 μm) in plaque are larger than iron deposits (<100 μm), but could not be distinguished from each other within the same voxel using the energy range available.


Spectral CT displays energy information in image form at high spatial resolution, enhancing the intrinsic contrast of lipid, calcium and iron within atheroma.

Key Points

Spectral computed tomography offers new insights into tissue characterisation.

Components of vulnerable atherosclerotic plaque are spectrally distinct with intrinsic contrast.

Spectral CT of excised atherosclerotic plaques can display iron, calcium and lipid.

Calcium deposits are larger than iron deposits in atheroma.

Spectral CT may help in the non-invasive detection of vulnerable plaques.


Carotid artery diseases Plaque Atherosclerotic X-Ray microtomography MARS-CT Spectral CT 



This work was funded by NZ National Heart Foundation grant 1414 and in part by the Ministry of Science and Technology through FRST PROJ-13860-NMTS-UOC. We acknowledge with gratitude assistance from the Medipix2 and Medipix3 collaborations at the European Centre for Nuclear Research (CERN) in providing the detectors and technological support. We thank Steven Muir for assistance in measuring the x-ray dose.


  1. 1.
    Bhatt DL, Steg PG, Ohman EM et al (2006) International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. JAMA 295:180–189PubMedCrossRefGoogle Scholar
  2. 2.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671PubMedCrossRefGoogle Scholar
  3. 3.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373PubMedCrossRefGoogle Scholar
  4. 4.
    Falk E, Sillesen H, Muntendam P, Fuster V (2011) The high-risk plaque initiative: primary prevention of atherothrombotic events in the asymptomatic population. Curr Atheroscler Rep 13:359–366PubMedCrossRefGoogle Scholar
  5. 5.
    Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531PubMedCrossRefGoogle Scholar
  6. 6.
    Rothwell PM, Eliasziw M, Gutnikov SA, Warlow CP, Barnett HJ (2004) Endarterectomy for symptomatic carotid stenosis in relation to clinical subgroups and timing of surgery. Lancet 363:915–924PubMedCrossRefGoogle Scholar
  7. 7.
    Zhao X, Underhill HR, Zhao Q et al (2011) Discriminating carotid atherosclerotic lesion severity by luminal stenosis and plaque burden: a comparison utilizing high-resolution magnetic resonance imaging at 3.0 Tesla. Stroke 42:347–353PubMedCrossRefGoogle Scholar
  8. 8.
    Saam T, Yuan C, Chu B et al (2007) Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging. Atherosclerosis 194:e34–e42PubMedCrossRefGoogle Scholar
  9. 9.
    Rozie S, de Weert TT, de Monye C et al (2009) Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors. Eur Radiol 19:2294–2301PubMedCrossRefGoogle Scholar
  10. 10.
    Wintermark M, Jawadi SS, Rapp JH et al (2008) High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J Neuroradiol 29:875–882PubMedCrossRefGoogle Scholar
  11. 11.
    Muhlenbruch G, Das M, Mommertz G et al (2010) Comparison of dual-source CT angiography and MR angiography in preoperative evaluation of intra- and extracranial vessels: a pilot study. Eur Radiol 20:469–476PubMedCrossRefGoogle Scholar
  12. 12.
    Langheinrich AC, Michniewicz A, Sedding DG et al (2007) Quantitative X-ray imaging of intraplaque hemorrhage in aortas of apoE(−/−)/LDL(−/−) double knockout mice. Investig Radiol 42:263–273CrossRefGoogle Scholar
  13. 13.
    Staub D, Patel MB, Tibrewala A et al (2010) Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke 41:41–47PubMedCrossRefGoogle Scholar
  14. 14.
    Partovi S, Loebe M, Aschwanden M et al (2012) Contrast-enhanced ultrasound for assessing carotid atherosclerotic plaque lesions. AJR Am J Roentgenol 198:W13–W19PubMedCrossRefGoogle Scholar
  15. 15.
    Boll DT, Hoffmann MH, Huber N, Bossert AS, Aschoff AJ, Fleiter TR (2006) Spectral coronary multidetector computed tomography angiography: dual benefit by facilitating plaque characterization and enhancing lumen depiction. J Comput Assist Tomogr 30:804–811PubMedCrossRefGoogle Scholar
  16. 16.
    McCollough CH, Kantor B, Primak AN et al (2006) Fast, dual-energy, multi-slice CT can discriminate Fe and Ca. Circulation 114:724–725Google Scholar
  17. 17.
    de Weert TT, Ouhlous M, Meijering E et al (2006) In vivo characterization and quantification of atherosclerotic carotid plaque components with multidetector computed tomography and histopathological correlation. Arterioscler Thromb Vasc Biol 26:2366–2372PubMedCrossRefGoogle Scholar
  18. 18.
    Chu B, Ferguson MS, Chen H et al (2009) Magnetic resonance imaging features of the disruption-prone and the disrupted carotid plaque. JACC Cardiovasc Imaging 2:883–896PubMedCrossRefGoogle Scholar
  19. 19.
    Takaya N, Yuan C, Chu B et al (2005) Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 111:2768–2775PubMedCrossRefGoogle Scholar
  20. 20.
    Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77PubMedCrossRefGoogle Scholar
  21. 21.
    Underhill HR, Yuan C, Yarnykh VL et al (2010) Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol 31:487–493PubMedCrossRefGoogle Scholar
  22. 22.
    Dey D, Slomka P, Chien D et al (2006) Direct quantitative in vivo comparison of calcified atherosclerotic plaque on vascular MRI and CT by multimodality image registration. J Magn Reson Imaging 23:345–354PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson NG, Butler AP, Scott NJ et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134PubMedCrossRefGoogle Scholar
  24. 24.
    Hurrell MA, Butler AP, Cook NJ, Butler PH, Ronaldson JP, Zainon R (2012) Spectral Hounsfield units: a new radiological concept. Eur Radiol 22:1008–1013PubMedCrossRefGoogle Scholar
  25. 25.
    Roessl E, Proksa R (2007) K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52:4679–4696PubMedCrossRefGoogle Scholar
  26. 26.
    Butler APH, Anderson NG, Tipples R et al (2008) Biomedical x-ray imaging with spectroscopic pixel detectors. Nucl Inst Methods Phys Res A 591:141–146CrossRefGoogle Scholar
  27. 27.
    Langheinrich AC, Kampschulte M, Crossmann C et al (2009) Role of computed tomography voxel size in detection and discrimination of calcium and iron deposits in atherosclerotic human coronary artery specimens. J Comput Assist Tomogr 33:517–522PubMedCrossRefGoogle Scholar
  28. 28.
    Wang X, Meier D, Taguchi K, Wagenaar DJ, Patt BE, Frey EC (2011) Material separation in x-ray CT with energy resolved photon-counting detectors. Med Phys 38:1534–1546PubMedCrossRefGoogle Scholar
  29. 29.
    Schlomka JP, Roessl E, Dorscheid R et al (2008) Experimental feasibility of multi-energy photon counting k-edge imaging in pre-clinical computed tomography. Phys Med Biol 53:4031–4047PubMedCrossRefGoogle Scholar
  30. 30.
    Lovett JK, Redgrave JN, Rothwell PM (2005) A critical appraisal of the performance, reporting, and interpretation of studies comparing carotid plaque imaging with histology. Stroke 36:1091–1097PubMedCrossRefGoogle Scholar
  31. 31.
    Munch B, Trtik P, Marone F, Stampanoni M (2009) Stripe and ring artifact removal with combined wavelet–Fourier filtering. Opt Express 17:8567–8591PubMedCrossRefGoogle Scholar
  32. 32.
    Dierick M, Masschaele B, Hoorebeke LV (2004) Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView®. Meas Sci Technol 15:1366CrossRefGoogle Scholar
  33. 33.
    Zainon R, Ronaldson JP, Butler APH, Butler PH (2011) Establishing a linear basis for quantifying material composition using spectral computed tomography. 4th International Conference on BioMedical Engineering and Informatics (BMEI 2011), Shanghai, ChinaGoogle Scholar
  34. 34.
    Alvarez RE, Macovski A (1976) Energy-selective reconstructions in x-ray computerised tomography. Phys Med Biol 21:733–744PubMedCrossRefGoogle Scholar
  35. 35.
    Ronaldson JP, Sedayo A, Scott N, Butler AP, Butler PH, Anderson NG (2011) Towards quantifying the composition of soft-tissues by spectral CT imaging with Medipix3. RSNA 97th Annual and Scientific Meeting, Chicago, USA. Available via Accessed 23 Feb 2012
  36. 36.
    Ronaldson JP, Butler AP, Anderson NG, Zainon R, Butler PH (2011) The performance of MARS-CT using Medipix3 for spectral imaging of soft-tissue. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 4002–4008Google Scholar
  37. 37.
    Ballabriga R, Campbell M, Heijne EHM, Llopart X, Tlustos L (2008) The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. Nucl Inst Methods Phys Res A 591:141–146CrossRefGoogle Scholar
  38. 38.
    Nandular KR, Hardie AD, Raghavan P, Schipper MJ, Baskurt E, Kramer CM (2007) Composition of the stable carotid plaque: insights from a multidetector computed tomography study of plaque volume. Stroke 38:935–940CrossRefGoogle Scholar
  39. 39.
    Yu H-Y, Wang G (2009) Compressed sensing based interior tomography. Phys Med Biol 54:2791–2805PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • R. Zainon
    • 1
  • J. P. Ronaldson
    • 2
  • T. Janmale
    • 3
  • N. J. Scott
    • 4
  • T. M. Buckenham
    • 5
  • A. P. H. Butler
    • 2
    • 5
    • 6
    • 7
  • P. H. Butler
    • 1
    • 7
  • R. M. Doesburg
    • 1
  • S. P. Gieseg
    • 2
  • J. A. Roake
    • 8
  • N. G. Anderson
    • 2
    • 5
    • 9
    Email author
  1. 1.Department of Physics and AstronomyUniversity of CanterburyChristchurchNew Zealand
  2. 2.Centre for BioengineeringUniversity of OtagoChristchurchNew Zealand
  3. 3.Free Radical Biochemistry Laboratory, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  4. 4.Department of MedicineUniversity of OtagoChristchurchNew Zealand
  5. 5.Department of Academic RadiologyUniversity of OtagoChristchurchNew Zealand
  6. 6.Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
  7. 7.European Organisation for Nuclear Research (CERN)GenevaSwitzerland
  8. 8.Department of Vascular, Endovascular and Transplant SurgeryChristchurch HospitalChristchurchNew Zealand
  9. 9.Department of RadiologyUniversity of Otago, ChristchurchChristchurchNew Zealand

Personalised recommendations