European Radiology

, Volume 22, Issue 11, pp 2295–2303

A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research

  • Joanna M. Wardlaw
  • Will Brindle
  • Ana M. Casado
  • Kirsten Shuler
  • Moira Henderson
  • Brenda Thomas
  • Jennifer Macfarlane
  • Susana Muñoz Maniega
  • Katherine Lymer
  • Zoe Morris
  • Cyril Pernet
  • William Nailon
  • Trevor Ahearn
  • Abdul Nashirudeen Mumuni
  • Carlos Mugruza
  • John McLean
  • Goultchira Chakirova
  • Yuehui (Terry) Tao
  • Johanna Simpson
  • Andrew C. Stanfield
  • Harriet Johnston
  • Jehill Parikh
  • Natalie A. Royle
  • Janet De Wilde
  • Mark E. Bastin
  • Nick Weir
  • Andrew Farrall
  • Maria C. Valdes Hernandez
  • The SINAPSE Collaborative Group
Magnetic Resonance

Abstract

Objective

MRI at 3 T is said to be more accurate than 1.5 T MR, but costs and other practical differences mean that it is unclear which to use.

Methods

We systematically reviewed studies comparing diagnostic accuracy at 3 T with 1.5 T. We searched MEDLINE, EMBASE and other sources from 1 January 2000 to 22 October 2010 for studies comparing diagnostic accuracy at 1.5 and 3 T in human neuroimaging. We extracted data on methodology, quality criteria, technical factors, subjects, signal-to-noise, diagnostic accuracy and errors according to QUADAS and STARD criteria.

Results

Amongst 150 studies (4,500 subjects), most were tiny, compared old 1.5 T with new 3 T technology, and only 22 (15 %) described diagnostic accuracy. The 3 T images were often described as “crisper”, but we found little evidence of improved diagnosis. Improvements were limited to research applications [functional MRI (fMRI), spectroscopy, automated lesion detection]. Theoretical doubling of the signal-to-noise ratio was not confirmed, mostly being 25 %. Artefacts were worse and acquisitions took slightly longer at 3 T.

Conclusion

Objective evidence to guide MRI purchasing decisions and routine diagnostic use is lacking. Rigorous evaluation accuracy and practicalities of diagnostic imaging technologies should be the routine, as for pharmacological interventions, to improve effectiveness of healthcare.

Key Points

Higher field strength MRI may improve image quality and diagnostic accuracy.

There are few direct comparisons of 1.5 and 3 T MRI.

Theoretical doubling of the signal-to-noise ratio in practice was only 25 %.

Objective evidence of improved routine clinical diagnosis is lacking.

Other aspects of technology improved images more than field strength.

Keywords

Magnetic resonance imaging Sensitivity and specificity Brain Neuroimaging Systematic review 

Supplementary material

330_2012_2500_MOESM1_ESM.doc (664 kb)
ESM 1(DOC 658 kb)

References

  1. 1.
    Wellcome Trust (2011) Human functional brain imaging 1990–2009: portfolio review. Wellcome Trust, LondonGoogle Scholar
  2. 2.
    Alvarez-Linera J (2008) 3 T MRI: advances in brain imaging. Eur J Radiol 67:415–426PubMedCrossRefGoogle Scholar
  3. 3.
    Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402PubMedGoogle Scholar
  4. 4.
    Weintraub MI, Khoury A, Cole SP (2007) Biologic effects of 3 Tesla (T) MR imaging comparing traditional 1.5 T and 0.6 T in 1023 consecutive outpatients. J Neuroimaging 17:241–245PubMedCrossRefGoogle Scholar
  5. 5.
    de Vocht F, Stevens T, van Wendel-de-Joode B, Engels H, Kromhout H (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations. J Magn Reson Imaging 23:291–297PubMedCrossRefGoogle Scholar
  6. 6.
    Millennium Research Group (2011) Funding frugality: US health care facilities reduce imaging spending. http://mrg.net/News-and-Events/Medtech-Confidence-Index/Funding-Frugality.aspx. Accessed 9 Nov 2011
  7. 7.
    McKinsey Global Institute (2008) Accounting for the cost of U.S. health care: a new look at why Americans spend more. http://www.mckinsey.com/Insights/MGI/Research/Americas/Accounting_for_the_cost_of_US_health_care. Accessed 11 Nov 2011
  8. 8.
    Farah MJ (2009) A picture is worth a thousand dollars. J Cogn Neurosci 21:623–624PubMedCrossRefGoogle Scholar
  9. 9.
    Roskies AL (2007) Are neuroimages like photographs of the brain? Philos Sci 74:860–872CrossRefGoogle Scholar
  10. 10.
    Wardlaw JM, Schafer B (2011) What am I thinking and who has the right to know? Contributions from a workshop on the wider societal implications of neuroimaging. Cortex 47:1147–1150PubMedCrossRefGoogle Scholar
  11. 11.
    Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9PubMedCrossRefGoogle Scholar
  12. 12.
    Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Radiol 58:575–580PubMedCrossRefGoogle Scholar
  13. 13.
    Gaa J, Weidauer S, Requardt M, Kiefer B, Lanfermann H, Zanella FE (2004) Comparison of intracranial 3D-ToF-MRA with and without parallel acquisition techniques at 1.5 T and 3.0 T: preliminary results. Acta Radiol 45:327–332PubMedCrossRefGoogle Scholar
  14. 14.
    Bernstein MA, Huston JI, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962PubMedCrossRefGoogle Scholar
  15. 15.
    Zou Z, Ma L, Cheng L, Cai Y, Meng X (2008) Time-resolved contrast-enhanced MR angiography of intracranial lesions. J Magn Reson Imaging 27:692–699PubMedCrossRefGoogle Scholar
  16. 16.
    Willinek WA, Born M, Simon B et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging—initial experience. Radiology 229:913–920PubMedCrossRefGoogle Scholar
  17. 17.
    Kantarci K, Reynolds G, Petersen RC et al (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24:843–849PubMedGoogle Scholar
  18. 18.
    Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5 T and 3.0 T. Magn Reson Med 45:765–769PubMedCrossRefGoogle Scholar
  19. 19.
    Inglese M, Spindler M, Babb JS, Sunenshine P, Law M, Gonen O (2006) Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. AJNR Am J Neuroradiol 27:684–688PubMedGoogle Scholar
  20. 20.
    Li Y, Osorio JA, Ozturk-Isik E et al (2006) Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 24:1295–1302PubMedCrossRefGoogle Scholar
  21. 21.
    Sjobakk TE, Lundgren S, Kristoffersen A et al (2006) Clinical 1 H magnetic resonance spectroscopy of brain metastases at 1.5 T and 3 T. Acta Radiol 47:501–508PubMedCrossRefGoogle Scholar
  22. 22.
    Kim JH, Chang KH, Na DG et al (2006) Comparison of 1.5 T and 3 T 1 H MR spectroscopy for human brain tumors. Korean J Radiol 7:156–161PubMedCrossRefGoogle Scholar
  23. 23.
    Al-Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187PubMedCrossRefGoogle Scholar
  24. 24.
    Krautmacher C, Willinek WA, Tschampa HJ et al (2005) Brain tumors: full- and half-dose contrast-enhanced MR imaging at 3.0 T compared with 1.5 T—initial experience. Radiology 237:1014–1019PubMedCrossRefGoogle Scholar
  25. 25.
    Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V et al (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 Tesla versus 1.5 Tesla. Invest Radiol 37:114–119PubMedCrossRefGoogle Scholar
  26. 26.
    Wolfsberger S, Ba-Ssalamah A, Pinker K et al (2004) Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J Neurosurg 100:278–286PubMedCrossRefGoogle Scholar
  27. 27.
    Ramgren B, Siemund R, Cronqvist M et al (2008) Follow-up of intracranial aneurysms treated with detachable coils: comparison of 3D inflow MRA at 3 T and 1.5 T and contrast-enhanced MRA at 3 T with DSA. Neuroradiology 50:947–954PubMedCrossRefGoogle Scholar
  28. 28.
    Knake S, Triantafyllou C, Wald LL et al (2005) 3 T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65:1026–1031PubMedCrossRefGoogle Scholar
  29. 29.
    Sawaishi Y, Sasaki M, Yano T, Hirayama A, Akabane J, Takada G (2005) A hippocampal lesion detected by high-field 3 tesla magnetic resonance imaging in a patient with temporal lobe epilepsy. Tohoku J Exp Med 205:287–291PubMedCrossRefGoogle Scholar
  30. 30.
    Kim LJ, Lekovic GP, White WL, Karis J (2007) Preliminary experience with 3-Tesla MRI and Cushing's disease. Skill Base 17:273–277CrossRefGoogle Scholar
  31. 31.
    Schaafsma JD, Velthuis BK, Majoie CB et al (2010) Intracranial aneurysms treated with coil placement: test characteristics of follow-up MR angiography—multicenter study. Radiology 256:209–218PubMedCrossRefGoogle Scholar
  32. 32.
    Sicotte NL, Voskuhl RR, Bouvier S, Klutch R, Cohen MS, Mazziotta JC (2003) Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest Radiol 38:423–427PubMedGoogle Scholar
  33. 33.
    Zou KH, Greve DN, Wang M et al (2005) Reproducibility of functional MR imaging: preliminary results of prospective multi-institutional study performed by Biomedical Informatics Research Network. Radiology 237:781–789PubMedCrossRefGoogle Scholar
  34. 34.
    Bachmann R, Reilmann R, Schwindt W, Kugel H, Heindel W, Kramer S (2006) FLAIR imaging for multiple sclerosis: a comparative MR study at 1.5 and 3.0 Tesla. Eur Radiol 16:915–921PubMedCrossRefGoogle Scholar
  35. 35.
    Kaufmann TJ, Huston J 3rd, Cloft HJ et al (2010) A prospective trial of 3T and 1.5T time-of-flight and contrast-enhanced MR angiography in the follow-up of coiled intracranial aneurysms. AJNR Am J Neuroradiol 31:912–918PubMedCrossRefGoogle Scholar
  36. 36.
    Wattjes MP, Lutterbey GG, Harzheim M et al (2006) Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T. Eur Radiol 16:2067–2073PubMedCrossRefGoogle Scholar
  37. 37.
    Simon B, Schmidt S, Lukas C et al (2010) Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla. Eur Radiol 20:1675–1683PubMedCrossRefGoogle Scholar
  38. 38.
    Buhk JH, Kallenberg K, Mohr A, Dechent P, Knauth M (2008) No advantage of time-of-flight magnetic resonance angiography at 3 Tesla compared to 1.5 Tesla in the follow-up after endovascular treatment of cerebral aneurysms. Neuroradiology 50:855–861PubMedCrossRefGoogle Scholar
  39. 39.
    Rosso C, Drier A, Lacroix D et al (2010) Diffusion-weighted MRI in acute stroke within the first 6 hours: 1.5 or 3.0 Tesla? Neurology 74:1946–1953PubMedCrossRefGoogle Scholar
  40. 40.
    Haacke EM, Makki M, Ge Y et al (2009) Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 29:537–544PubMedCrossRefGoogle Scholar
  41. 41.
    Kuhl CK, Textor J, Gieseke J et al (2005) Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 234:509–516PubMedCrossRefGoogle Scholar
  42. 42.
    Heidenreich JO, Schilling AM, Unterharnscheidt F et al (2007) Assessment of 3D-TOF-MRA at 3.0 Tesla in the characterization of the angioarchitecture of cerebral arteriovenous malformations: a preliminary study. Acta Radiol 48:678–686PubMedCrossRefGoogle Scholar
  43. 43.
    Stehling C, Wersching H, Kloska SP et al (2008) Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol 15:895–900PubMedCrossRefGoogle Scholar
  44. 44.
    Sohn CH, Sevick RJ, Frayne R, Chang HW, Kim SP, Kim DK (2010) Fluid attenuated inversion recovery (FLAIR) imaging of the normal brain: comparisons between under the conditions of 3.0 Tesla and 1.5 Tesla. Korean J Radiol 11:19–24PubMedCrossRefGoogle Scholar
  45. 45.
    van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434PubMedCrossRefGoogle Scholar
  46. 46.
    Hu HH, Haider CR, Campeau NG, Huston JI, Riederer SJ (2008) Intracranial contrast-enhanced magnetic resonance venography with 6.4-fold sensitivity encoding at 1.5 and 3.0 Tesla. J Magn Reson Imaging 27:653–658PubMedCrossRefGoogle Scholar
  47. 47.
    Gibbs GF, Huston JI, Bernstein MA, Riederer SJ, Brown RD Jr (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol 25:84–87PubMedGoogle Scholar
  48. 48.
    Fushimi Y, Miki Y, Kikuta K et al (2006) Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in moyamoya disease: preliminary experience. Radiology 239:232–237PubMedCrossRefGoogle Scholar
  49. 49.
    Anzalone N, Scomazzoni F, Cirillo M et al (2008) Follow-up of coiled cerebral aneurysms: comparison of three-dimensional time-of-flight magnetic resonance angiography at 3 Tesla with three-dimensional time-of-flight magnetic resonance angiography and contrast-enhanced magnetic resonance angiography at 1.5 Tesla. Invest Radiol 43:559–567PubMedCrossRefGoogle Scholar
  50. 50.
    Barth M, Nobauer-Huhmann IM, Reichenbach JR et al (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414PubMedGoogle Scholar
  51. 51.
    Ba-Ssalamah A, Nobauer-Huhmann IM, Pinker K et al (2003) Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 38:415–422PubMedGoogle Scholar
  52. 52.
    Agati R, Maffei M, Bacci A, Cevolani D, Battaglia S, Leonardi M (2004) 3 T MR assessment of pituitary microadenomas: a report of six cases. Riv Neuroradiol 17:890–895Google Scholar
  53. 53.
    Nielsen K, Rostrup E, Frederiksen JL et al (2006) Magnetic resonance imaging at 3.0 Tesla detects more lesions in acute optic neuritis than at 1.5 Tesla. Invest Radiol 41:76–82PubMedCrossRefGoogle Scholar
  54. 54.
    Wattjes MP, Harzheim M, Kuhl CK et al (2006) Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic MR imaging criteria for multiple sclerosis? AJNR Am J Neuroradiol 27:1794–1798PubMedGoogle Scholar
  55. 55.
    Wattjes MP, Harzheim M, Lutterbey GG et al (2008) Does high field MRI allow an earlier diagnosis of multiple sclerosis? J Neurol 255:1159–1163PubMedCrossRefGoogle Scholar
  56. 56.
    Gonen O, Gruber S, Li BS, Mlynarik V, Moser E (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol 22:1727–1731PubMedGoogle Scholar
  57. 57.
    Ethofer T, Mader I, Seeger U et al (2003) Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla. Magn Reson Med 50:1296–1301PubMedCrossRefGoogle Scholar
  58. 58.
    Benedetti B, Rigotti DJ, Liu S, Filippi M, Grossman RI, Gonen O (2007) Reproducibility of the whole-brain N-acetylaspartate level across institutions, MR scanners, and field strengths. AJNR Am J Neuroradiol 28:72–75PubMedGoogle Scholar
  59. 59.
    Inoue T, Ogasawara K, Kumabe T, Jokura H, Watanabe M, Ogawa A (2005) Minute glioma identified by 3.0 Tesla magnetic resonance spectroscopy—case report. Neurol Med Chir (Tokyo) 45:108–111CrossRefGoogle Scholar
  60. 60.
    Krasnow B, Tamm L, Greicius MD et al (2003) Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 18:813–826PubMedCrossRefGoogle Scholar
  61. 61.
    Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Joanna M. Wardlaw
    • 1
    • 2
    • 14
  • Will Brindle
    • 2
  • Ana M. Casado
    • 2
  • Kirsten Shuler
    • 1
    • 2
  • Moira Henderson
    • 1
    • 2
  • Brenda Thomas
    • 2
  • Jennifer Macfarlane
    • 1
    • 3
  • Susana Muñoz Maniega
    • 1
    • 2
  • Katherine Lymer
    • 1
    • 2
  • Zoe Morris
    • 2
  • Cyril Pernet
    • 1
    • 2
  • William Nailon
    • 4
  • Trevor Ahearn
    • 1
    • 5
  • Abdul Nashirudeen Mumuni
    • 1
    • 6
  • Carlos Mugruza
    • 1
    • 7
  • John McLean
    • 1
    • 8
  • Goultchira Chakirova
    • 1
    • 9
  • Yuehui (Terry) Tao
    • 1
    • 2
  • Johanna Simpson
    • 1
    • 10
  • Andrew C. Stanfield
    • 9
  • Harriet Johnston
    • 1
    • 11
  • Jehill Parikh
    • 1
    • 2
  • Natalie A. Royle
    • 1
    • 2
  • Janet De Wilde
    • 1
    • 2
    • 12
  • Mark E. Bastin
    • 1
    • 2
  • Nick Weir
    • 13
  • Andrew Farrall
    • 1
    • 2
  • Maria C. Valdes Hernandez
    • 1
    • 2
  • The SINAPSE Collaborative Group
  1. 1.Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) CollaborationEdinburghUK
  2. 2.Division of Clinical NeurosciencesUniversity of EdinburghEdinburghUK
  3. 3.University of DundeeDundeeUK
  4. 4.Edinburgh Cancer CentreUniversity of EdinburghEdinburghUK
  5. 5.Institute of Medical SciencesUniversity of AberdeenAberdeenUK
  6. 6.Department of Clinical PhysicsUniversity of GlasgowGlasgowUK
  7. 7.School of PsychologyUniversity of DundeeDundeeUK
  8. 8.Institute of Neurological SciencesUniversity of GlasgowGlasgowUK
  9. 9.Division of PsychiatryUniversity of EdinburghEdinburghUK
  10. 10.Department of PsychologyUniversity of StirlingStirlingUK
  11. 11.Department of PsychologyUniversity of St AndrewsSt AndrewsUK
  12. 12.The Higher Education AcademyYorkUK
  13. 13.Department of Medical PhysicsRoyal Infirmary of EdinburghEdinburghUK
  14. 14.SINAPSE Collaboration, Brain Research Imaging Centre, Division of Clinical NeurosciencesWestern General HospitalEdinburghUK

Personalised recommendations