Advertisement

European Radiology

, Volume 22, Issue 11, pp 2397–2406 | Cite as

Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy

  • Kunwar S. S. Bhatia
  • Cina S. L. Tong
  • Carmen C. M. Cho
  • Edmund H. Y. Yuen
  • Yolanda Y. P. Lee
  • Anil T. Ahuja
Head and Neck

Abstract

Objective

To evaluate real-time shear wave ultrasound elastography (SWE) for characterizing focal thyroid lesions in routine clinical practice.

Methods

Seventy-four patients with 81 focal thyroid lesions undergoing conventional US with needle cytology also underwent SWE. Absolute and relative SWE stiffness measurements on colour-coded elastograms were correlated with cytology and their discriminatory performances assessed.

Results

Seventeen nodules were malignant (13 papillary, 4 other cancers), 45 benign (43 hyperplastic nodules, 2 focal thyroiditis), 5 indeterminate (“follicular lesions”), and 5 had inadequate cytology. SWE results were higher in malignant than benign nodules (P values 0.02–0.05) although their discriminatory performances were mediocre (AUCs 0.58–0.74). The most accurate SWE cut-off, 34.5 kPa for a 2-mm region of interest, achieved 76.9 % sensitivity and 71.1 % specificity for discriminating papillary cancer from benign nodules. No thresholds produced high sensitivity without lowering specificity appreciably, and vice versa. Nodule size correlated with SWE for benign nodules (P < 0.01). Intranodular cystic change or calcification did not influence SWE. Qualitatively, elastographic artefacts and foci lacking colour elasticity signal occurred in some solid nodules.

Conclusion

Although malignant nodules are generally stiffer than benign nodules, the precision results do not suggest a definitive role for SWE, at present, in identifying or excluding thyroid malignancy.

Key Points

Shear wave ultrasound elastography (SWE) offers new insight into thyroid disease.

Papillary cancers have higher SWE indices (equating to higher stiffness) than benign nodules.

SWE appears limited in terms of identifying or excluding thyroid malignancy accurately.

Vertically aligned elastographic artefacts can occur in thyroid SWE.

Areas lacking SWE colour signal can occur in some solid thyroid nodules.

Keywords

Ultrasound Shear wave elastography Elasticity imaging Thyroid Diagnosis 

Notes

Acknowledgements

We thank Dr and Mrs Lui Che Woo Special Centre for the Knee, Hong Kong, for equipment support for this study.

References

  1. 1.
    Bojunga J, Herrmann E, Meyer G, Weber S, Zeuzem S, Friedrich-Rust M (2010) Real-time elastography for the differentiation of benign and malignant thyroid nodules: a meta-analysis. Thyroid 20:1145–1150PubMedCrossRefGoogle Scholar
  2. 2.
    Asteria C, Giovanardi A, Pizzocaro A et al (2008) US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 18:523–531PubMedCrossRefGoogle Scholar
  3. 3.
    Rubaltelli L, Corradin S, Dorigo A et al (2009) Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med 30:175–179PubMedCrossRefGoogle Scholar
  4. 4.
    Rago T, Santini F, Scutari M, Pinchera A, Vitti P (2007) Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 92:2917–2922PubMedCrossRefGoogle Scholar
  5. 5.
    Hong Y, Liu X, Li Z, Zhang X, Chen M, Luo Z (2009) Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J Ultrasound Med 28:861–867PubMedGoogle Scholar
  6. 6.
    Dighe M, Bae U, Richardson ML, Dubinsky TJ, Minoshima S, Kim Y (2008) Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology 248:662–669PubMedCrossRefGoogle Scholar
  7. 7.
    Lyshchik A, Higashi T, Asato R et al (2005) Thyroid gland tumor diagnosis at US elastography. Radiology 237:202–211PubMedCrossRefGoogle Scholar
  8. 8.
    Friedrich-Rust M, Sperber A, Holzer K et al (2009) Real-time elastography and contrast-enhanced ultrasound for the assessment of thyroid nodules. Exp Clin Endocrinol Diabetes 118:602–609Google Scholar
  9. 9.
    Tranquart F, Bleuzen A, Pierre-Renoult P, Chabrolle C, Sam Giao M, Lecomte P (2008) Elastosonography of thyroid lesions. J Radiol 89:35–39PubMedCrossRefGoogle Scholar
  10. 10.
    Bhatia KS, Rasalkar DP, Lee YP et al (2011) Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol 66:799–807PubMedCrossRefGoogle Scholar
  11. 11.
    Lippolis PV, Tognini S, Materazzi G et al (2011) Is elastography actually useful in the presurgical selection of thyroid nodules with indeterminate cytology? J Clin Endocrinol Metab 96:E1826–1830PubMedCrossRefGoogle Scholar
  12. 12.
    Ning CP, Jiang SQ, Zhang T, Sun LT, Liu YJ, Tian JW (2012) The value of strain ratio in differential diagnosis of thyroid solid nodules. Eur J Radiol 81:286–291Google Scholar
  13. 13.
    Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY (2012) Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology 262:1002–1013PubMedCrossRefGoogle Scholar
  14. 14.
    Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51:396–409PubMedCrossRefGoogle Scholar
  15. 15.
    Tanter M, Bercoff J, Athanasiou A et al (2008) Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol 34:1373–1386PubMedCrossRefGoogle Scholar
  16. 16.
    Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 256:297–303PubMedCrossRefGoogle Scholar
  17. 17.
    Evans A, Whelehan P, Thomson K et al (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12:R104PubMedCrossRefGoogle Scholar
  18. 18.
    Sebag F, Vaillant-Lombard J, Berbis J et al (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 95:5281–5288PubMedCrossRefGoogle Scholar
  19. 19.
    Chang JM, Moon WK, Cho N et al (2011) Clinical application of shear wave elastography (SWE) in the diagnosis of benign and malignant breast diseases. Breast Cancer Res Treat 129:89–97PubMedCrossRefGoogle Scholar
  20. 20.
    Tozaki M, Fukuma E (2011) Pattern classification of ShearWave elastography images for differential diagnosis between benign and malignant solid breast masses. Acta Radiologica 52:1069–1075Google Scholar
  21. 21.
    Arda K, Ciledag N, Aktas E, Aribas BK, Kose K (2011) Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol 197:532–536PubMedCrossRefGoogle Scholar
  22. 22.
    Cosgrove DO, Berg WA, Dore CJ et al (2012) Shear wave elastography for breast masses is highly reproducible. Eur Radiol 22:1023–1032Google Scholar
  23. 23.
    Bhatia KS, Cho CC, Tong CS, Lee YY, Yuen EH, Ahuja AT (2012) Shear wave elastography of focal salivary gland lesions: preliminary experience in a routine head and neck US clinic. Eur Radiol 22:957–965Google Scholar
  24. 24.
    Bhatia KS, Cho CC, Tong CS, Yuen EH, Ahuja AT (2012) Shear wave elasticity imaging of cervical lymph nodes. Ultrasound Med Biol 38:195–201Google Scholar
  25. 25.
    Lyshchik A, Higashi T, Asato R et al (2005) Elastic moduli of thyroid tissues under compression. Ultrason Imaging 27:101–110PubMedGoogle Scholar

Copyright information

© European Society of Radiology 2012

Authors and Affiliations

  • Kunwar S. S. Bhatia
    • 1
  • Cina S. L. Tong
    • 1
  • Carmen C. M. Cho
    • 1
  • Edmund H. Y. Yuen
    • 1
  • Yolanda Y. P. Lee
    • 1
  • Anil T. Ahuja
    • 1
  1. 1.Department of Imaging and Interventional Radiology, Faculty of MedicineThe Chinese University of Hong Kong c/o Prince of Wales HospitalShatinChina

Personalised recommendations